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Interface '88, the 20th Symposium on the Interface: Computing Science and Statistics, was the
first of the Interface Symposia held under the auspices of the Interface Foundation of North America, a
non-profit, educational corporation. The Symposium was extremely successful. The attached program
and abstracts indicate the quality and scope of the meeting. There were approximately 130
contributed papers up from approximately 60 the prior year. There were some 60 invited papers up
somewhat from the previous year. Attendance jumped from about 300 to about 425. We received

numerous compliments on the organization and the quality of the program.3Some highlights and innovations we feel pleased to report. For the first time, Interface '88 had
a series of special invited papers along with the plenary address. Professor Bradley Efron gave the
plenary address. Professors Jerry Friedman, George Box and Tom Banchoff were the three special
invited lecturers. These sessions proved to be extremely well attended (to overflow crowds) andI _ I

-"- __ sharpened the focus of the meeting. We also introduced for the first time a special invited session for
new Pt1i. .'s-to1i attle on their research. Other sessions which were new to this meeting
included sessions on Discrete Ma matics, Symbolic Computation, Supercomputing, Neural Networks
and Object Oriented Programming. .An emerging area which received attention in the contributed
sessions was on Information Systems, Databases and Statistics. This meeting was also the first to have ,

. a serious technical focus which was Computationally Intensive Statistical Methods. --- - - J,. ,.-'-/ •

The exhibits were by invitation only. The exhibitors were invited on the basis of their ability
to complement the technical program. Additional cooperating societies were involved in Interface '88.
New with this meeting were the American Mathematical Society, the National Computer Graphics
Association, the Operations Research Society of America, The Washington Statistical Society and the
Virginia Academy of Science's Chapter of ASA. This year with the help of the funding agencies, we
introduced a young investigator's fund used primarily to fund young Ph.D.'s and graduate student
attendance at the Interface. More than $10,000 was set aside for this purpose. This was a highly
successful and well received innovation.
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Interface '89 is scheduled for Orlando Florida in early April. The University of Central Florida i
is the host institution with local arrangements being made by Professor Linda Malone. Professor Ken
Berk of Illinois State University is the Program Chairman. Interface '90 will be held in East Lansing
at Michigan State University. Professor Raoul LePage will be the Program Chairman. Interface '91
will be under the Chairmanship of Dr. John Kettenring of Bell Communications Research. The site
will likely be on the West Coast, but final arrangements have yet to be made.

This final report is organized as follows: Immediately following in Appendix A is the Program
Information, Program Schedule and Abstracts. Appendix B contains the detailed list of paid attendees.
As can be expected, some attendees failed to pay registration fees and hence are not recorded. We
believe actual attendance was closer to 445. Appendix C contains the detailed expenditures billed to
the Air Force Office of Scientific Research.
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Symposium Chairman

Edward J. Wegran
Center for Computational Statistics

George Mason University

Fairfax, VA 22030
(703) 323-2723

EMAIL: EWEGMANOGMUVAX (bitnet) or

EWEGMANOGMUVAX.GMU.EDU (arpanet)

Symposium Coordinator and Exhibit Manager

Jan P. Guenther
Center for Computational Statistics

George Mason University
Fairfax, VA 22030

(703) 764-6170I
Program Committee

David Allen John Miller
University of Kentucky George Mason University

I Chris Brown Mervin Muller
University of Rochester Ohio State University

Martin Fischer Stephen Nash
Defense Communication Engineering Center George Mason University

Donald T. Gantz Emanuel Parsen
George Mason University Texas A and M University

Prem K. Goel Richard Ringeisen
Ohio State University Clemson University

Muhammed Habib Jerry Sacks
University of North Carolina University of Illinois

Mark E. Johnson David Scott
Los Alamos National Laboratory Rice University

Sallie Keller-McNulty Nozer Singpurwalla
Kansas State University George Washington University

Raoul LePage Werner Stuetzle
Michigan State University University of Washington

Don McClure Paul Tukey
Brown University Bell Communications Research
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Past Interface Symposia

Southern California, 1968, 1969, 1970, 1971 Chairs: Arnold Goodman,
Nancy Mann

Oklahoma State University, 1972 Chair: Mitchell 0. Locks
5th Symposium Keynote Speaker: H. 0. Hartley I
University of California, Berkeley, 1973 Chair: Michael Tarter
6th Symposium Keynote Speaker: John Tukey 1
Iowa State University, 1974 Chair: William J. Kennedy
7th Symposium Keynote Speaker: Martin Wilk

University of California, Los Angeles, 1975 Chair: James W. Frane
8th Symposium Keynote Speaker: Edwin Kuh I
Harvard University, 1976 Chairs: David Hoaglin and
9th Symposium Roy E. Welsch I

Keynote Speaker: John R. Rice

National Bureau of Standards, 1977 Chair: David Hogben I
10th Symposium Keynote Speaker: Anthony Ralston

North Carolina State University, 1978 Chairs: Ron Gallant and
11th Symposium Thomas Gerig

Keynote Speaker: Nancy Mann

University of Waterloo, 1979 Chair: Jane F. Gentleman
12th Symposium Keynote Speaker: D. R. Cox

Carnegie-Mellon University, 1981 Chair: William F. Eddy
13th Symposium Keynote Speaker: Brad Efron U
Rensselaer Polytechnic Institute, 1982 Chairs: John W. Wilkinson,
14th Symposium Karl W. Heiner and Richard Sacher I

Keynote Speaker: John Tukey

IMSL, Inc (held in Houston), 1983 Chair: James Gentle
15th Symposium Keynote Speaker: Richard Hamming

University of Georgia (held in Atlanta), 1984 Chair: Lynne Billard
16th Symposium Keynote Speaker: George Marsalgia

University of Kentucky, 1985 Chair: David Allen
17th Symposium Keynote Speaker: John C. Nash I
Colorado State University, 1986 Chair: Thomas Boardman
18th Symposium Keynote Speaker: John Tukey
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Past Interface Symposia (Continued)

I Temple University (held in Philadelphia), 1987 Chair: Richard Heiberger
19th Symposium Keynote Speaker: Gene Golub

George Mason University, 1988 Chair: Edward J. Wegman
20th Symposium Keynote Speaker: Brad Efron

Future Interface Symposia

University of South Florida, 1989 Chairs: Ken Berk and Linda Malone
21st Symposium

Michigan State University, 1990 Chair: Raoul LePage
22nd Symposium

General Information

The 20th Symposium represents a milestone in the development of the interface between
computing science and statistics. In August, 1987 the Interface Foundation of North America was
incorporated as a non-profit, educational corporation whose main charter is to provide the legal entity
underpinning the Symposium series. The Foundation represents a maturation of the Symposium series
and ensures its continuation as an independent meeting focused on the interface. The 20th Symposium
is the first held under the auspices of the Foundation. It is also the first with a focused theme.

Theme: - Computationally Intensive Statistical Methods

Keynote Address: - "Computationally intensive statistical inference"
Bradley Efron, Department of Statistics, Stanford University

Invited Papers: - There are 60 invited papers including several with invited discussion organized into
23 sessions. In addition to the plenary session with the keynote address by Brad Efron, there are three
special invited lectures featuring Jerome Friedman, George E. P. Box and Thomas Banchoff.

I Contributed Papers: - There are 128 contributed papers scheduled in 26 sessions.

Proceedings: - The Proceedings of the 20th Interface Symposium will be published by the American
Statistical Association and will be available late autumn of 1988.

Opening Reception: - All registrants are invited to attend the Opening Reception on Wednesday
evening from 8:00 p.m. until 10:00 p.m. The Reception will include a light food service and two tickets
for drinks will be provided registrants. A cash bar will be available thereafter. The Reception will be
held in the hotel ballroom.

I Banquet: - The Banquet will be served buffet style on Friday evening beginning at 7:00 p.m. The
planned menu includes roast turkey, baked ham, seafood in leek and wine sauce, roast beef, andchicken in almond sauce. The banquet is a separate cost item. It will be held in the hotel ballroom
following a cash bar beginning at 6:00 p.m. Following the banquet, the Mill Run Dulcimer Band, a
Washington-area based bluegrass group will perform. As many may known, the Washington, D. C.

area is noted as a headquarters area for bluegrass and old-time country music.
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I
Other Food Service: - Coffee and Danish will be served during the Thursday, Friday and Saturday
morning breaks and soft drinks and cookies during the afternoon breaks on Thursday and Friday. I
These food services will be available in the exhibit area. Luncheons and other meals will be at the
option of the registrants and may be obtained in the hotel or in nearby restaurants. A cash bar will
also be available on Thursday evening from 6:00 p.m. until 9:00 p.m.

Shuttle Service: - A free shuttle service is provided by the hotel to and from the Dulles International
Airport on the half hour. In addition, the hotel will be running a shuttle service to and from the
Vienna Metro (subway) station. The schedule of service will be posted. The Metro systems provides
convenient and economical access to the downtown Washington metropolitan area.

Exhibits: - The exhibit area is located in rooms 9 and 10 of the hotel. Exhibits will be available to
registrants immediately following the Plenary session on Thursday morning through the close of the

Symposium on Saturday.
Exhibitors

Ametek Computer Corporation North Holland/Elsevier Publishers
606 East Huntington Drive P. 0. Box 1991
Monrovia, CA 91016 1000 BZ Amsterdam I
(714) 599-4662 The Netherlands

Automatic Forecasting Systems, Inc. Numerical Algorithms Group
P. 0. Box 563 1101 31st Street, Suite 100 I
Hatboro, PA 19040 Downers Grove, IL 60515
(215) 675-0652 (312) 971-2337 3
BBN Software Springer-Verlag, Inc.
10 Fawcett Street 175 Fifth Avenue
Cambridge, MA 02238 New York, NY 10010 I
(617) 873-8116 (212) 460-1600

BMDP Statistical Software, Inc. SYSTAT, Inc.
1440 Sepulveda Boulevard, Suite 316 1800 Sherman Avenue
Los Angeles, CA 90025 Evanston, IL 60201
(213) 479-7799 (312) 864-5670 I
Intel Scientific Computers TCI Software
15201 NW Greenbrier Parkway 1190 Foster Road
Beaverton, OR 97006 Las Cruces, NM 88001 I
(503) 629-7631 (505) 522-4600

Marcel-Dekker, Inc.. Tektronix, Inc.
270 Madison Avenue M.S. 48-300, Industrial Park
New York, NY 10016 Beaverton, OR 97077
(212) 696-9000 (503) 627-7111

IMSL, Inc. Wadsworth & Brooks/Cole
2500 ParkWest Tower One Advanced Books and Software
2500 CityWest Boulevard 10 Davis Drive -
Houston, TX 77042-3020 Belmont, CA 94002
(713) 782-6060 (415) 595-2350
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Short Course

Forecasting on the IBM-PC - A Survey, Wednesday, April 20, 9:00 a.m. to 4:30 p.m., David P. Reiily,
Automatic Forecasting Systems, Inc., P. 0. Box 563, Hatboro, PA 19040, (215) 675-0652

Cooperating Societies I
American Mathematical Society
P. 0. Box 6248
Providence, RI 02940

American Statistical Association
1429 Duke Street
Alexandria, VA 22314

International Association for Statistical Computing I
NTDH
P. 0. Box 145
N-7701 Steinkjer I
Norway

Institute of Mathematical Statistics
3401 Investment Boulevard, Suite 7
Hayward, CA 94545

National Computer Graphics Association I
2722 Merilee, Suite 200
Fairfax, VA 22031 3
Operations Research Society of America
Mount Royal and Guilford Avenues
Baltimore, MD 21202

Society for Industrial and Applied Mathematics
1400 Architects Building
117 South 17th Street
Philadelphia, PA 19103

Virginia Academy of Sciences Chapter of the ASA
c/o Golde I. Holtzman
Department of Statistics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Washington Statistical Society
P. 0. Box 70843
Washington, DC 20024-0843
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Program Schedule

I Date and Time Session Title Room

Thursday, April 21
8:45 a.m. - 9:45 a.m. Keynote Address: Computationally Intensive Statistical Ballroom

Inference

10:00 a.m. - 12:00 noon Computational Aspects of Time Series Analysis Room 6
Inference and Artificial Intelligence Room 5
Computational Discrete Mathematics Room 3
Contributed: Software Tools Room 2
Contributed: Image Processing I Room D
Contributed: Bootstapping and Related Computational Room 1

Methods

1:30 p.m. - 3:30 p.m. Special Invited Lecture I Room 6
Image Processing and Spatial Processes Room 5
Parallel Computing Architectures Room 3
Contributed: Statistical Methods ! Room 2
Contributed: Hardware and Software Reliability Room D
Contributed: App' .cations I Room 1

3:45 p.m. - 5:45 p.m. Special Invited Session for Recent Ph.D.'s Room 6
Simulation Room 5
Symbolic Computation and Statistics Room 3
Contributed: Statistical Graphics Room 2
Contributed: Models of Imprecision in Expert Systems Room D
Contributed: Time Series Methods Room I

Friday, April 22
8:00 a.m. - 10:00 p.m. Computer-Communication Networks Room 6

Supercomputing, Design of Experiments and Bayesian Room 5
Analysis, Part 1

Numerical Methods in Statistics Room 3
Contributed: Probability and Stochastic Processes Room 2
Contributed: Statistical Methods 1I Room D
Contributed: Nonparametric and Robust Techniques Room I

10:15 a.m. - 12:15 p.m. Special Invited Lecture II Room 6
Supercomputing, Design of Experiments and Bayesian Room 5

Analysis, Part 2
Neural Networks Room 3
Contributed: Applications II Room 2
Contributed: Image Processing II Room D
Contributed: Simulation I Room 1

I
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I
2:00 p.m. - 4:00 p.m. Tales of the Unexpected: Successful Room 6

Interdisciplinary Research
Density Estimation and Smoothin-, Room 5
Object Oriented Programming Room 3
Contributed: Numerical Methods Room 2
Contributed: Bayesian Methods Room D
Contributed: Expert Systems in Statistics Room I

Saturday, April 23
8:30 a.m. - 10:30 a.m. Computational Aspects of Simulated Annealing Room 6

Dynamical High Interaction Graphics Room 5
Contributed: Statistical Methods III Room 3Contributed: Simulation 11 Room 2I

Contributed: Biostatistics Applications Room D
Contributed: Discrete Mathematical Methods Room 1

10:45 a.m. - 12:45 p.m. Special Invited Lecture III Room 6 I
Entropy Methods Room 5
Contributed: Information Systems, Databases and Statistics Room 3
Contributed: ;irallel Computing Room 2
Contributed: iOensity and Function Estimation Room D
Contributed: Statistical Methods IV Room 1

I
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Technical and Social Program

WEDNESDAY, APRIL 20, 1988

9:00 a.m. - 4:30 p.m. Room 6
Short Course - Forecasting on the IBM-PC, David Reilly, Automatic Forecasting Systems,
Inc.

4:00 p.m. Lobby
Registration for Symposium

5:00 p.m. Room G3 Interface Board of Directors Meeting (by invitation only)

8:00 p.m. - 10:00 p.m. Ballroom3 Free Opening Reception

THURSDAY, APRIL 21, 1988N7:30 a.m. Lobby

Registration

I 8:30 a.m. - 8:45 a.m. Ballroom
Welcoming Remarks

3 8:45 a.m. - 9:45 a.m. Ballroom
Plenary Session, Chaired by: Edward J. Wegman, George Mason University

"Computationally intensive statistical inference," Bradley Efron, Stanford University

10:00 a.m. - 12:00 noon Room 6
Computational Aspects of Time Series Analysis, Chaired by: Emanuel Parzen,
Texas A & M University

"Recent progress in algorithms and architectures for time series analysis," George Cybenko,
Tufts University

"Numerical approach to non-gaussian smoothing and its application," Genshiro Kitagawa,3 The Institute of Statistical Mathematics

Discussants - Will Gersch, University of Hawaii and H. Joseph Newton, Texas A & M3 University

I
U
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THURSDAY, APRIL 21, 1988
10:00 a.mx. - 12:00 noon Room 5 U

Inference and Artificial Intelligence, Chaired by: N. Singpurwalla, Ge6rge Washington
University

"Spectral Analysis on a LISP machine," Don Percival, University of Washington

"DeFinetti's approach to group decision making," Richard Barlow, University of California, 3
Berkeley

"Meta-analysis," Ingram Olkin, Stanford University 3
10:00 a.m. - 12:00 noon Room 3

Computational Discrete Mathematics, Chaired by: Rich Ringeisen, Clemson University

"Discrete structures and reliability computations," James P. Jarvis, Clemson University
and Douglas R. Shier, College of William and Mary

"Random graphs," Edward R. Scheinerman, The Johns Hopkins University

"Structure and finiteness conditions on graphs," Neil Robertson, Ohio State University

10:00 a.m. - 12:00 noon Room 2
Contributed Papers: Software Tools, Chaired by: Leonard Hearne, George Mason
University

"An introduction to CARTtm: classification and regression trees," Gerard T. LaVamnway,
Norwich University 3
"Noise appreciation: analyzing residuals using RS/Explore," David A. Burn and Fanny
O'Brien, BBN Software Products Corporation

"COSTAR: an environment for computer-guided data analysis," David A. Whitney and
Ilya Schiller, TASC

"A closer look at symbolic computation," William M. Makuch, General Electric Corporation I
and John W. Wilkinson, Rensselaer Polytechnic Institute

10:00 a.m. - 12:00 noon Room D I
Contributed Papers: Image Processing I, Chaired by: A. K. Sood, George Mason University

"Image analysis of a turbulent object using fractal parameters," Amar Ait-Kheddache, 3
North Carolina State University

"Identification of closed figures," Jeff Banfield, Montana State University and Adrian 3
Raftery, University of Washington

"Compression of image data using arithmetic coding," Ahmed H. Desoky and Thomas
Klein, University of Louisville I

141
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THURSDAY, APRIL 21, 1988

"Image analysis of the microvascular system in the rat cremaster muscle," C. O'Connor,
P. D. Harris, A. Desoky and G. Ighodaro, University of Louisville

"Automatic detection of the optic nerve in color images of the retina," Norman Katz,
Subhasis Chaudhuri, and Michael Goldbaum, University of California, San Diego and
Mark Nelson, Radford Company

1 10:00 a.m. - 12:00 noon Room 1
Contributed Papers: Bootstrapping and Related Computational Methods, Chaired by:
Richard Boistein, George Mason University

I i"A Monte Carlo study of cross-validation and the Cp criterion for model selection in
multiple linear regression," Robert M. Boudreau, Virginia Commonwealth University

I "Bootstrapping regression strategies," David Brownstone, University of California, Irvine

"Bootstrapping the missed regression model with reference to the capital and energy
complementarity debate," Baldev Raj, Wilfred Laurier University

"Efficient data sensitivity computation for maximum likelihood estimation," Daniel Chin3 and James C. Spall, The Johns Hopkins University

"Bootstrap procedures in random effect models for comparing response rates in multi-center3 clinical trials," Michael F. Miller, Hoechst-Roussel Pharmaceuticals, Inc.

1:30 p.m. - 2:45 p.m. Room 6
Special Invited Lecture I, Chaired by: Jim Filliben, National Bureau of Standards

"Fitting functions to scattered noisy data in high dimensions," Jerome Friedman,
Stanford University

U 1:30 p.m. - 3:30 p.m. Room 5
Image Processing and Spatial Processes, Chaired by: Don McClure, Brown University

Introduction, Don McClure, Brown University

"A multilevel-multiresolution technique for image analysis and robot vision via
renormalization group ideas," Basilis Gidas, Brown University

"A mathematical approach to expert system construction," Alan Lippman, Brown3 University

I
U
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THURSDAY, APRIL 21, 1988 3
1:30 p.m. - 3:30 p.m. Room 3

Parallel Computing Architectures, Chaired by: Chris Brown, University of Rochester

"Experiences with the BBN Butterflym parallel processor," John Mellor-Crummy,
University of Rochester

"Statistical computing on a hypercube," George Ostrouchov, Oak Ridge National Lab

"Asychronous iteration," William F. Eddy and Mark Schervish, Carnegie-Mellon University

1:30 p.m. - 3:30 p.m. Room 2
Contributed Papers: Statistical Methods I, Chaired by: Walter Liggett, National Bureau of
Standards

"An example of the use of a Bayesian interpretation of multiple discriminant analysis 3
results," James R. Nolan, Siena College

"Real-time classification and discrimination among components of a mixture distribution," 5
Douglas A. Samuelson, International Telesystems Corporation

"Comparison of three 'local model' classification methods," Daniel Normolle, University of
Michigan

"Application of posterior approximation techniques for the ordered Dirichlet distribution,"
Thomas A. Mazzuchi and Refik Soyer, George Washington University i
"Unbiased estimates of multivariate general moment functions of the population and
application to sampling without replacement for a finite population," Nabih N. Mikhail,
Liberty University

1:30 p.m. - 3:30 p.m. Room D
Contributed Papers: Hardware and Software Reliability, Chaired by: Asit Basu, University
of Missouri

"Linear prediction of failure times of a repairable system," M. Ahsanullah, Rider College 3
"The simulation of life tests with random censoring," Joseph C. Hudson, GMI Engineering
and Management Institute i

"The use of general modified exponential curves in software reliability modeling,"
Taghi M. Khoshgoftaar, Florida Atlantic University 3
"A model for information censoring," William A. Link, Patuxent Wildlife Research Center

"Increasing reliability of multiversion fault-tolerant software design by modulation," Junryo 3
Miyashita, California State University, San Bernardino

I
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THURSDAY, APRIL 21, 1988

1:30 p.m. - 3:30 p.m. Room I
Contributed Papers: Applications I, Chaired by: Susannah Schiller, National Bureau of
Standards

I "Classifying linear mixtures with an application to high resolution gas chromatography,"
William S. Rayens, University of Kentucky

"Bias of animal trend estimates," Paul H. Geissler and William A. Link, Patuxent Wildlife
Research Center

"A non-random walk through futures prices of the British pound," William S. Mallios,
California State University, Fresno

"A stochastic extension of Petri net graph theory," L. M. Anneberg, Wayne State University

"Neural Petri nets," N. H. Chamas, Wayne State University

3:45 p.m. - 5:45 p.m. Room 6

Special Invited Session for Recent Ph.D.'s, Chaired by: John J. Miller, George Maon
University

"Additive principal components: a method for estimating equations with small variance

from multivariate data," Deborah Donnell, Bellcore

3 "Gamma processes, paired comparisons and ranking," Hal Stern, Harvard University

"Smoothing data with correlated errors," Naomi Altman, Cornell University

I"The data viewer: program for graphical data analysis," Catherine Hurley, University of
Waterloo

I 3:45 p.m. - 5:45 p.m. Room 5

Simulation, Chaired by: Donald T. Gantx, George Mason University

3 "Random variables for supercomputers," George Marsaglia, Florida State University

"Computational statistics in experimental design for studies of variability," John Ramberg,
University of Arizona

"Linear combinations of estimators of the variance of the sample mean," Bruce W.
Schmeiser, Purdue University

I
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THURSDAY, APRIL 21, 1988

3:45 p.m. - 5:45 p.m. Room 3 1
Symbolic Computation and Statistics, Chaired by: William S. Rayens, University of
Kentucky

"Some applications of symbol manipulation in statistical analysis," Kathryn M. Chaloner,
University of Minnesota

"Symbolic computation in statistical decision theory," Marietta Tretter, Texas A & M I
University

"Partial differentiation by computer with applications to statistics," John W. Sawyer, Jr., 3
Texas Tech University

3:45 p.m. - 5:45 p.m. Room 2
Contributed Papers: Statistical Graphics, Chaired by: Robert Launer, Army Research
Office

"Visual multidimensional geometry with applications," Alfred Inselberg, IBM Scientific I
Center, Los Angeles and Bernard Dimsdale, University of California

"Some graphical representations of multivariate data," Masood Bolorforoush and 3
Edward J. Wegman, George Mason University

"Graphical representations of main effects and interaction effects in a polynomial regression
on several predictors," William DuMouchel, BBN Software Products Corporation I
"Chernoff faces: a PC implementation," Mohammad Dadashzadeh, University of Detroit 3

3:45 p.m. - 5:45 p.m. Room D
Contributed Papers: Models of Imprecision in Expert Systems, Chaired by:
Mark Youngren, George Washington University I
"Fusion and propagation of graphical belief models," Russell Almond, Harvard University

"Belief function computations for paired comparisons," David Tritchler and Gina Lockwood, I
Ontario Cancer Institute

"Variants of Tierney-Kadane," Guenter Weiss and H. A. Howlader, University of Winnepeg 3
"Dynamically updating relevance judgements in probabilistic information systems via users'
feedback," Peter Lenk and Barry D. Floyd, New York University I
"Computational requirements for inference methods in expert systems: a comparative
study." Ambrose Goicoechea, George Mason University 3

I
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I 3:45 p.m. - 5:45 p.m. Room 1
Contributed Papers: Time Series Methods, Chaired by: Neil Gerr, Qilice of Naval3 Research

"Inference techniques for a class of exponential time series," V. Chandrasekar and

Peter Brockwell, Colorado State University

"Some recursive methods in time series analysis," Q. P. Duong, Bell Canada

"Time series in a microcomputer environment," John Henstridge, Numerical Algorithms
Group

"Smoothing irregular time series," Keith W. Hipel, University of Waterloo, A. I. McLeod,
The University of Western Ontario and Byron Bodo, Ministry of the Environment

"Computation of the theoretical autocovariance function of multivariate ARMA processes,"3 Stefan Mittnik, SUNY at Stony Brook

6:00 p.m. - 8:00 p.m. Room G
Executive Session of Statistical Computing Section of ASA (by invitation only)

6:00 p.m. - 9:00 p.m. Ballroom
Cash Bar

3 FRIDAY, APRIL 22, 1988

8:00 a.m. - 10:00 am. Room 6
Computer-Communication Networks, Chaired by: Martin Fischer, Defense Communication
Engineering Center

"Introduction to packet switching networks," Jeffrey Mayersohn, BBN Communication3 Corporation

"Electronic mail - a valuable augmentation tool for scientists," Elizabeth Feinler,3 SRI International

"Networks to support science," Stephen Wolff, National Science FoundationI
I
I
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8:00 a 1. - 10:00 a.m. Room 5 1
SuPecouputing, Design of Experiments and Bayesian Analysis, Part I, Chaired by:
Jerry Sacks, University of Illinois

"Acceleration methods for Monte Carlo integration by Bayesian inference," John Geweke, U
Duke University

"Software for Bayesian analysis: current status and additional needs," Prern K. Goel,I
Ohio State University

"Some numerical and graphical stategies for implementing Bayesian methods,"
Adrian Smith, University of Nottingham

8:00 a.m. - 10:00 am. Room 3
Numerical Meth', for Statistics, Chaired by: Stephen Nash, George Mason University

"Interior point methods for linear programming," Paul Boggs, National Bureau of Standards 3
"Block iterative methods for parallel optimization," Stephen Nash and Ariela Sofer, George
Mason University

"New methods for B-differentiable functions: theory and applications," Jong-Shi Pang,
The Johns Hopkins University

8:00 a.m. - 10:00 am. Room 2 U
Contributed Papers: Probability and Stochastic Processes, Chaired by: Yash Mittal,
National Science Foundation 3
"Moving window detection for 0-1 Markov trials," Joseph Glaz, University of Connecticut,
Philip C. Hormel, CIBA-GEIGY Corporation and Bruce McK. Johnson, University of
Connecticut

"Maximum queue size and hashing with lazy deletion," Claire M. Mathieu, Laboratoire
d'Informatique de l'Ecole Normale Superieure and Jeffrey S. Vitter, Brown University 3
"On the probability integrals of the multivariate normal," Dror Rom and Sanat Sarkar,
Temple University 3
"Computational aspects of harmonic signal detection," Keh-Shin Lii and Tai-Houn Tsou,
University of California, Riverside

"Maximum likelihood estimation of discrete control processes: theory and application," U
John Rust, University of Wisconsin

2
U
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8:00 a.m. - 10:00 am. Room D
Contributed Papers: Statistical Methods II, Chaired by: Cliff Sutton, George Mason
University

I"Computing extended maximum likelihood estimates in generalized linear models,"
Douglas B. Clarkson, IMSL, Inc. and Robert I. Jennrich, University of California, Los
Angeles

"Assessment of prediction procedures in multiple regression analysis," Victor Kipnis,
University of Southern Florida

"Estimation of the variance matrix for maximum likelihood parameters by quasi-Newton
methods," Linda Pickle, National Cancer Institute and Garth P. McCormick, George3 Washington University

"Variable selection in multivariate multiresponse permutation procedures," Eric P. Smith,3 Virginia Tech

"The effect of small covariate-criterion correlations on analysis of covariance,"
Michael J. Rovine, A. von Eye and P. Wood, Pennsylvania State University

8:00 a.m. - 10:00 am. Room 1
Contributed Papers: Nonparametric and Robust Techniques, Chaired by: Paul Speckman,3 University of Missouri

"Robustness of weighted estimators of location: a small sample survey," Greg Campbell3 and Richard I. Shrager, NIH

"A comparison of Spearman's footrule and rank correlation coefficient with exact tables and
approximations," LeRoy A. Franklin, Indiana State University

U "Approximations of the Wilcoxon test in small samples with lots of ties,"
Arthur R. Silverberg, Food and Drug Administration

3 "Simulated power comparisons of MRPP rank tests and some standard score tests,"
Derrick S. Tracy and Khushnood A. Khan, University of Windsor

3 10:15 a.m. - 12:15 p.m. Room 6
Special Invited Lecture II, Chaired by: Mervin Muller, Ohio State University

"Some modern quality improvement techniques and their computing implications,"
George E. P. Box, University of Wisconsin

Special invited discussion, Gerald J. lahn, GE CRD and Gregory B. Hudak, Scientific
Computing Associates

2
3 2
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FRIDAY, APRIL 21, 1988

10:15 a.m. - 12:15 p.m. Room 5 3
Supercomputing, Design of Experiments and Bayesian Analysis, Part Ii, Chaired by:
Prem K. Goel, Ohio State University

"Supercomputer-aided design," Jerry Sacks, University of Illinois U
"A Bayesian approach to the design and analysis of computer experiments," Toby Mitchell,
Oak Ridge National Lab U

10:15 a.m. - 12:15 p.m. Room 3
Neural Networks, Chaired by: Muhammed Habib, University of North Carolina U
"Statistical learning networks: a unifying view," Andrew R. Barron, University of Illinois
and Roger L. Barron, Barron Associates, Inc. 3
"Stochastic models of neuronal behavior," Gopinath Kallianpur, University of North
Carolina 3
"Inference for stochastic models for neural networks," Muhammed Habib, University of
North Carolina and A. Thavaneswaran, Temple University

10:15 a.m. - 12:15 p.m. Room 2
Contributed Papers: Applications II, Chaired by: Brian Woodruff, Air Force Office of
Scientific Research 3
"Space Balls! or estimating diameter distributions of polystyrene microspheres,"
Susannah Schiller and Charles Hagwood, National Bureau of Standards 3
"Comparing sample reuse methods at FHA - an empirical approach," Thomas N. Herzog,
U. S. Department of Housing and Urban Development

"Maximum entropy and its application to linguistic diversity," R. K. Jain, Memorial
University of Newfoundland

'Encoding and processing of Chinese language - a statistical structural approach," I
Chaiho C. Wang, George Washington University

"The elimination of quantization bias using dither," Martin J. Garbo and 3
Douglas M. Dreher, Hughes Aircraft Company

10:15 a.m. - 12:15 p.m. Room D
Contributed Papers: Image Processing II, Chaired by: Refik Soyer, George Washington U
University

"Maximum entropy and the nearly black image," lain Johnstone, Stanford University and U
David Donoho, University of California, Berkeley

"A probabilistic approach to range image description," Arun Sood, George Mason University 3
and E. Ai-fujazi, Wayne State University

I
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3 "An empirical Bayes decision rule of two-class pattern recognition for one-dimensional
parametric distributions," Tze Fen Li, Rutgers University

"Statistical modeling of a priori information for image processing problems," Z. Liang, Duke
University Medical Center

"Advanced statistical computations improve image processing applications, Bobby Saffari,
Generex Corporation

10:15 a.m. - 12:15 p.m. Room 1I Contributed Papers: Simulation I, Chaired by: Bill DuMouchel, BBN

"On comparative accuracy of multivariate nonnormal random number generators,"
Lynne K. Edwards, University of Minnesota

"Bayesian analysis using Monte Carlo integration: an effective methodology for handling
some difficult problems in statistical analysis," Leland Stewart, Lockheed Research
Laboratory

"A squeeze method for generating exponential power variates," Dean M. Young, Baylor
I University

"Mixture experiments and fractional factorials used to tailor large-scale computer3 simulation," T.K. Gardenier, TKG Consultants, Ltd.

"Simulating stationary Gaussian ARMA time series," Terry J. Woodfield, SAS Institute,
i Inc.

2:00 p.m. - 4:00 p.m. Room 6
Tales of the Unexpected: Successful Interdisciplinary Research, Chaired by: Sallie McNulty,
Kansas State University

"Some statistical problems in meteorology," Grace Wahba, University of Wisconsin

I "Modeling parallelism, an interdisciplinary approach," Elizabeth Unger, Kansas State
University

I "Mice, rain forests and finches: experiences collaborating with biologists," Douglas Nychka,
North Carolina State University

i Discussion: Jerome Sacks, University of Illinois

2
I
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FRIDAY, APRIL 22, 1988

2:00 p.m. - 4:00 p.m. Room 53
Density Estimation and Smoothing, Chaired by: David Scott, Rice University

"XploRe: computing environment for exploratory regression and density estimation
methods," Wolfgang Hirdle, University of Bonn i

"Curve estimation with applications to mapping and risk decomposition," Michael Tarter,
University of California, Berkeley

"Interactive multivariate density estimation in the S package," David Scott, Rice
University I

2:00 p.m. - 4:00 p.m. Room 3
Object Oriented Programming, Chaired by: Werner Stuetzle, University of Washington 3
"Object oriented programming: a tutorial," Wayne Oldford, University of Waterloo

"An object oriented toolkit for plotting and interface construction," Robert Young, I
Schlumburger, Palo Alto Research Center

"An outline of Arizona," John MacDonald, University of Washington 3
2:00 p.m. - 4:00 p.m. Room 2

Contributed Papers. Numerical Methods, Chaired by: Ariela Sofer, George Mason
University

"A theorgy of quadrature in applied probability: a fast algorithmic approach," Allen Don,
Long Island University U
"Higher order functions in numerical programming," David Gladstein, ICAD

"A numerical comparison of EM and quasi-Newton type algorithms for finding MLE's for a
mixture of normal distributions," Richard J. Hathaway, John W. Davenport and Margaret
Anne Pierce, Georgia Southern College 3
"Numerical algorithms for exact calculations of early stopping probabilities in one-sample
clinical trials with censored exponential responses," Brenda MacGibbon, Concordia
University, Susan Groshen, University of Southern California and Jean-Guy Levreault, I
University of Montreal

"An application of quasi-Newton methods in parametric empirical Bayes calculations," 3
David Scott, Concordia University

I24 U
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FRIDAY, APRIL 22, 1988

2:00 pm. - 4:00 p.m. Room D
Contributed Papers: Bayesian Methods, Chaired by: William F. Edly, Carnegie-Mellon
University

I "Approaches for empirical Bayes confidence intervals with application to exponential scale
parameters," Alan E. Gelfand and Bradley P. Carlin, University of Connecticut

"A data analysis and Bayesian framework for errors-in-variables," John H. Herbert,

Department of Energy

"Bayesian diagnostics for almost any model," Robert E. Weiss, University of Minnesota

"An iterative Bayes method for classifying multivariate observations," Duane E. Wolting,
Acrojet Tech Systems Company

"A Bayesian model of information conbination from noisy sensors," G. Anandalingam,
i University of Pennsylvania

2:00 p.m. - 4:00 p.m. Room 1
Contributed Papers: Expert Systems in Statistics: Chaired by Khalid Abouri, George
Washington University

"Inside a statistical expert system: implementation of the ESTES expert system,"3 Paula Hietala, University of Tampere, Finland

"Knowledge-based project management: work effort estimation," Vijay Kanabar,
University of Winnipeg

"Combining knowledge acquisition and classical statistical techniques in the development of
a veterinary medical expert system," Mary McLeish, University of Guelph

S" lThe effect of measurement error in a machine learning system," David L. Rumpf and
Mieczyslaw M. Kokar, Northeastern University

3 "An expert system for prescribing statistical tests of non-parametric and simple parametric
designs," Gary Tubb, University of South Florida

6:00 p.m. - 7:00 p.m. Ballroom
Cash Bar

7:00 p.m. - 9:30 p.m. Ballroom
Banquet, Live Entertainment (fee event)

2
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SATURDAY, APRIL 23, 1988

8:30 a..m. - 10:30 am. Room 8 
Computational Aspects of Simulated Annealing, Chaired by: Mark E. Johnson, Los Alamos
National Lab

"Computational experience with simulated annealing," Daniel G. Brooks and
William A. Verdini, Arizona State University

"Simulated annealing in optimal design construction," Ruth K. Meyer, St. Cloud State I
University and Christopher J. Nachtsheim, University of Minnesota

"A simulated annealing approach to mapping DNA," Larry Goldstein and 3
Michael J. Waterman, University of Southern California

8:30 a.m. - 10:30 a.m. Room 5
Dynamical High Interaction Graphics, Chaired by: Paul Tukey, Bellcore

"Determining properties of minimal spanning trees by local sampling," Allen McIntosh,
Bellcore and William Eddy, Carnegie-Mellon University

"Data animation," Rick Becker, AT&T Bell Labs and Paul Tukey, Bellcore

"Dimensionality constraints on projection and section views of higher dimensional loci,"
George Furnas, Bellcore

8:30a.m. - 10:30 a.m Room 3 1
Contributed Papers: Statistical Methods 11, Chaired by: Thomas Massuchi,
George Washington University 3
"Simultaneous confidence intervals in the general linear model," Jason C. Hsu,
Ohio State University

"Empirical likelihood ratio confidence regions," Art Owen, Stanford University

"An approximate confidence interval for the optimal number of mammography x-ray units
in the Dallas-Fort Worth metropolitan area," Roger W. Peck, University of Rhode Island

"Optimizing linear functions of random variables having a joint multinomial or multivariate
normal distribution," Josephina P. de los Reyes, University of Akron U
"On covariances of marginally adjusted data," James S. Weber, Roosevelt University g

8:30 a.m. - 10:30 a.m. Room 2
Contributed Papers: Simulation II, Chaired by : Robert Jernigan, American University

"SIMDAT and SIMEST: differences and conv-rgences," James R. Thompson, Rice U
University

"Simulation and stochastic modeling for the spatial allocation of multi-categorical I
resources," Richard S. Segall, University of Lowell

263
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3 "Robustness study of some random variate generators," Lih-Yuan Deng, Memphis State
University

"Testing multiprocessing random number generators," Mark J. Durst, Lawrence Livermore
National Laboratory

"An approach for generations of two variable sets with a specified correlation and first and
second sample moments," Mark Eakin and Henry D. Crockett, University of Texas at
Arlington

8:30 a.m. - 10:30 a.m. Room D
Contributed Papers: Biostatistics Applications, Chaired by: Nancy Flournoy, National
Science Foundation

I "An algorithm to identify changes in hormone patterns," Morton B. Brown, Fred J. Karsch
and Benoit Malpaux, University of Michigan

3 "Applying microcomputer techniques to multiple cause of death data: from magnetic tape
to artificial intelligence," Giles Crane, New Jersey State Department of Health

"Spline estimation of death density using census and vital statistics data," John J. Hsieh,
University of Toronto

"Optimum experimental design for sequential clinical trials," Richard Simon, National
Cancer Institute

"Bayes estimation of cerebral metabolic rate of glucose in stroke patients," P. David Wilson,
University of South Florida, S. C. Huang and R. A. Hawkins, UCLA School of Medicine

8:30 a.m. - 10:30 a.m. Room 11 Contributed Papers: Discrete Mathematical Methods, Chaired by: Donald Gants, George
Mason University

"Minimum cost path planning in the random traversability space," A. Meystel, Drexel
University

"Algorithms to reconstruct a convex set from sample points," Marc Moore, Ecole
Polytechnique Montreal and McGill University, Y. Lemay, Bell Canada, and
S. Archambault, Ecole Polytechnique Montreal

"On the geometric probability of discrete lines and circular arcs approximating arbitrary
object boundaries," Chang Y. Choo, Worchester Polytechnic Institute

"Application of orthogonalization procedures to fitting tree-structured models,"
Cynthia 0. Siu, The Johns Hopkins University

"Evaluation of functions over lattices," Michael Conlon, University of Florida

* 27
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10:45 a.m. - 12:00 noon Room 6 3
Special Invited Lecture III, Chaired by: Sally Howe, National Bureau of Standards

"Visualizing high dimensional spaces," Thomas Banchoff, Brown University 3
10:45 a.m. - 12:45 p.m. Room 5

Entropy Methods, Chaired by: Raoul LePage, Michigan State University

"Introduction to relative entropy methods," John Shore, Entropic Processing Corporation

"Structural covariance matrices and 2-dimensional spectra," John Burg, Entropic Processing
Corporation

"Matrix completion and determinants," Charlie Johnson, College of William and Mary 3
10:45 a.m. - 12:45 p.m. Room 3

Contributed Papers: Information Systems, Databases and Statistics, Chaired by:
Robert Teitel, Teitel Data Services

"Information systems and statistics," Nancy Flournoy, National Science Foundation I
"Is there a need for a statistical knowledge base?" Z. Chen, Louisiana State University

"An alternate methodology for subject database planning," Craig W. Slinkman, Henry D.
Crockett, and Mark Eakin, University of Texas at Arlington

"A sensitivity analysis of the Herfindal-Hirschman Index," James R. Knaub, Jr.,
U. S. Department of Energy I
"Statistical methods for document retrieval and browsing," Jan Pedersen, Xerox PARC and
John Tukey and P. K. Halvorsen 3

10:45 a.m. - 12:45 p.m. Room 2
Contributed Papers: Parallel Computing, Chaired by: Joseph Brandenburg, INTEL
Scientific Computers

"Programming the BBN butterfly parallel processor," Pierre duPont, BBN Advanced
Computers

"A tool to generate parallel FORTRAN code for the Intel iPSC/2
hypercube," Carlos Gonzalez, J. Chen and J. Sarma, George Mason University 3
"All-subsets regression on a hypercube multiprocessor," Peter Wollan, Michigan
Technological University 3
"Multiply twisted N-cubes for multiprocessor arallel computers," T.H. Shiau, University of
Missouri, Columbia 3
"Markov chains arising in collective computation networks with additive noise,"
R.H. Baran, Naval Surface Warfare Center

281
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1 10:45 a.m. - 12:45 p.m. Room D
Contributed Papers: Density and Function Estimation, Chaired by: jCelesta Ball, George
Mason University

"The L, asymptotically optimal kernel estimate," Luc Devroye, McGill University

"Derivative estimation by polynomial-trigonometric regression," Paul Speckman, University
of Missouri, Columbia and R.L. Eubank, Southern Methodist University

"A pooled error density estimate for the bootstrap," Walter Liggett, National Bureau of
Standards

"Efficient algorithms for smoothing spline estimation of functions with or without
discontinuities," Jyh-Jen Horng Shiau, University of Missouri, Columbia

"On the convergence of variable bandwidth kernel estimators of a density function,"3 Ting Yang, University of Cincinnati

10:45 a.m. - 12:45 p.m. Room 1
Contributed Papers: Statistical Methods IV, Chaired by: LeRoy A. Franklin,
Indiana State University

"Stochastic test statistics," P. Warwick Millar, University of California, Berkeley

"It's time to stop!," Hubert Lilliefors, George Washington University

"The effects of heavy tailed distributions on the two sided k-sample Smirnov test,"
Henry D. Crockett and M. M. Whiteside, University of Texas at Arlington

"Performance of several one sample procedures," David Turner, Utah State University

"Exact power calculation for the chi-square test of two proportions," Carl E. Pierchala,
Food and Drug Administration

2
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Abstracts

Abstracts are arranged in alphabetical order of the last name of the first author. The first
author may not correspond to the presenter of the paper. Thus in looking up an abstract for a paper,
it may be worthwhile to search under co-authors. In any case, the abstracts are referenced in t h

author index and may be located by use of the index .
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A Probabilistic Approach to Range Image Description

E. AI-Hujaui
Wayne State University

* and

A. K. Sood
George Mason University

In this paper we present an approach for describing range image& based on the H (Mean
Curvature) and K (Gaussian Curvature) parameters. Range images are unique in that they directly
approximate the physical surfaces of a real world 3-D scene. H and K are defined from the
fundamental theorems of differential geometry, and provide visible, invariant pixel labels that can be
used to characterize the scene. The sign of H and K can be used to classify each pixel into one of eight
possible surface types. Due to sensitivity of these curvature parameters to noise, the computed HK-
sign map does not directly identify surfaces in the range image. In this paper a probabilistic approach
for the segmentation of the HK-sign map is suggested. The image is modeled as a Markov random
field on a finite lattice. The prior knowledge about the solution is expressed in the form of a Gibbs
probability distribution. This approach allows the integration of the output of a number of modules in
an efficient way. Due to the computational complexity of this approach, a sub-optimal algorithm
using dynamic programming has been developed. The performance of the proposed techniques on a3 number of range images will be presented.

|
I

Image Analysis of a Turbulent Object Using Fractal Parameters

Amar Ait-Kheddache
North Carolina State University

Electrical and Computer Engineering Department
Campus Box 7911

Raleigh, NC 27695-7911
The objective of this paper is threefold. First, it describes the use of image processing

techniques for recording and measuring information about pollutant dispersion (smoke). Visual images
of the smoke plume dispersion are used to develop techniques for describing wake processes. Second, a
new model based on fractal concepts is developed to analyze smoke data. The concept of fractals is
introduced for the purpose of giving some qualitative and quantitative interpretation to the transient
flows of the pollutant. The Fractals display interesting dynamics and provide an environment for
modeling complex natural phenomena. Third, a theoretical justification and mathematical methods
are developed for making the concept useful in praciice. We have chosen two fractal parameters, the
horizontal fractal parameter and the vertical fractal parameter to characterize the image data. These
parameters are computed only for the very active regions (turbulent regions) of the phenomenon
(smoke) and they are nonconservative properties. Analysis and testing of the technique have
determined information about which features can be extracted from the image sequences (spatio.
temporal characteristic, concentration, velocity.. .). Some statistical interpretation which support the
results are reported. The limitations of the techniques are also addressed. - tn summary, thephenomenon itself, the experimental study and the achieved results using fractals constitute the novelty
of the work.
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Naomi Altman

Cornell University 3
Suppose the dependent variable y is observed with error at a set of design points x on an interval, and

that the mean of y is assumed to be a smooth function of x. Linear nearest neighbors, kernel regression

estimators, and smoothing splines are all examples of techniques for estimating the mean function

which depend on a single smoothing parameter, A, and are linear functions of the data when A is fixed.

When the error process is weakly continuous, ther is a non-zero lower bound on the variance of linear 5
estimators of the mean as the sample size increases on a fixed interval. So the estimators cannot

converge in any sense to a deterministic function, as they do when the errors are independent. 3
The standard techniques for selecting smoothing parameters, such a cros-validation and generalized 3
cross-validation, perform very badly when the errors are correlated. If the sum of the correlations from

zero to infinity is negative, the techniques favor oversmoothing; if the sum is positive, the techniques

favor undersmoothing. However, the selection criteria can be adjusted to incorporate the known effects

of the correlations or the residuals on which the criteria are based can be transformed to eliminate the

effects of correlations. I
Estimates of the correlation function based on residuals from a preliminary smooth are shown to be 3
very biased. Oversmoothing leads to estimates of correlation which are too large, whiler

undersmoothing leads to estimates which are too small. This leads to a negative feed-back effect which 3
makes iterative techniques inadvisable.

In simulation, the standard selection criteria are shown to behave as predicted by the theory. The I
corrected criteria are shown to be very effective when the correlation function is known. Although the

estimates of correlation based on the data are poor, they are shown to be sufficient for correcting the I
selection criteria, particuloarly if the signal to noise ratio is small.

I
I
I
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jLINEAR PREDICTION OF FAILURE TIMES OF A REPAIRABLE SYSTEM

M. Ahsanullah

1 Rider College Lawrenceville, New Jersey 08648-3099, U. S. A.

* ABSTRACT

Suppose we consider a repairable system in which a failed component is replaced

3 immediately by a component of equal age. On replacement of the component, the

system becomes operational and we assume the repairing time of the component is

3 negligible. We assume the survival times of the components are independent and

identically distributed.

Let us denote by Xo, X1, X2 9 ...... the failure times of the system where X - 0.

The time between failures Un - Xn - Xn_ n > are non negative random variables.

Let F(t) - Pr (U, < t), for t>0 and F (t) - 1 - F (t).

We assume that F(t) has a density f(t) with F(O) - 0 and r(t) - f(t)/F(t), for
t

T (t) > 0. The function r (t) is called hazard rate and R (t) - fo r(u) du is

i called the cumulative hazard rate. The hazard rate of the system after repair

is assumed to be the same as before. Let F (t) - Pr(X < t) and f (t) - F'(t).
n n n n3 Then

l-Fn(x) F (x) if n - 1

3 F (x) + F(x), if n-2

and in general, n-l

I- Fn x) -(x) Z ((x)) i/i!

i-o

1-F (x) can be interpreted as the survival time to the n failure of the

system given that a failed componentis replaced by one of equal age and the
repair time is negligible. The density fn (x) of X can be written as f (x)

f(x). (R(x)) n - l , n > 1.
(n-1) !

Some distributional properties of the nth survival times are discussed when F
has different life distributions. Various predictions of the sth failure time

x (s>n), based on the first n and as well as on some selected failure times are

obtained. Their expected costs with respect to different cost functions and a

replacement Model, where the system is replaced at a certain failure or failure

time, are computed.
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Fusion and Propagation in Graphical Belief Models
Russell Almond

Harvard University

ABSTRACT

Graphical models are a clear and concise way of describingprobabilistic dependencies among
many variables. Only relationships between variables which share a common hyperedge are modeled,
considerably simplifying both the modeling and the computational tasks. The latter represents I
considerable savings, as the direct approach to calculating margin4 relationships from the components
of a graphical model is computationally expensive, requiring 22 operations for n binary variables.
Graphical models have lately been studied by Pearl (1986a,1986b], Moussouris[1974], and Lauritzen 1
and Spiegelhalter[1987] in the Bayesian case, and Kong(l986al, Shafer, Shenoy, and Mellouli [19861,and Shenoy and Shafer(1986] in the Belief Function case.

Belief functions are a generalization of probability measures that allow ways to express total 3
ignorance, Bayesian prior probability distributions, conditional probability distributions (likelihoods),
logical relationships (production rules) and observations. All these diverse types of knowledge can be
combined with a uniform fusion rule, the direct sum operator. Simple procedures can restrict belief
functions to a smaller frame and extend them to a larger frame without adding additional information.
The theory of belief functions is developed by Dempster(1967], Shafer[1976,1982], and Kong(J986a].

By a simple procedure given here and in Kong[1986b), we can transform the model hypergraph
into a (free of closures). I present apr6pagation algorithm from Dempster and Kong [1986] for finding 1

marginal belief functions from a tree of closures. Each node of the tree of closures is a "chunk" of the
original problem; each chunk can be computed independently of all other chunks except its neighbors.
Every node in the tree passes to each of its neighbors a message (expressed as a belief function) that I
consists of the local information fused with all of the information that has propagated through the
other branches of the tree. Using this propagation algorithm along with the fusion algorithm given by
the direct sum operator, we can easily compute marginal beliefs, with substantially less computational I
cost than the direct approach. I have translated this mathematical formalisim into a computer
program and dicuss some examples computed using this procedure.

Key Concepts: Graphical Models, Belief Functions, Bayesian Models, Fusion and Propagation, 1
Probability in Ezpert Systems, Triangulated Graphs. U
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A BAYESIAN MODEL OF INFORMATION COMBINATION FROM NOISY SENSORS 1

G. Anandalingam 1

Department of Systems
University of Pennsylvania I

Philadelphia, PA 19104-6315

A paper to be presented at

The 20th Symposium on the
Interface of Computing Science and Statistics U

Reston, Virginia. April 21-23, 1988

____ I
ABSTRACT

An important thrust of research in artificial intelligence (AI) has l
been the use of multiple sensors (or experts) for information processing. 1
The work that falls into this category is often called "Distributed Al".
Researchers worry about the placement of these sensors (choice of experts),
and ways to combine the distributed corpus of knowledge. Parallel, and I
somewhat preceding these research thrusts, a number of statisticians have
been working in the area of combining statistical data, and management
scientists have been working on the combination of time-series forecasts. I
The main problem in all these studies has been the extraction of weights for
the individual information sources.

In this paper, we use a Bayesian approach to combine information from 1
distributed sensors. We extend and generalize previous Bayesian analyses to
incorporate noisy information, and lagged sensor responses. In order to do
the latter, we show the connection between the generalized Bayesian model, 1
and Kalman Filtering in dynamic systems analysis. In all cases, the combined Iinformation is shown to be unbiased (i.e. unaffected by measurement errors 1
in the sensors) and efficient.

We also examine the case where the sensor error structures are unknown
to the information processor. We set up a Bayesian procedure to learn about
the sensors, and to combine information recursively. The learning feature is
novel for the statisticaL literature on information combination, but is well
in the spirit of artificial intelligence research. 3

I
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A stochastic extension of Petri Net graph theory

Lisa M. Anneberg

Wayne State UniversityI
A Petri net is a bipartite graph, and is heavily utilized for modelling computer hardware and

software (among other items). The two nodes (arcs and places) will each have an associated

probability (of correct operation) and two time values (average time waiting and time elapsed during

function). The probabilities associated with both places and transition can give both the overall

reliabilities of all paths, and each place/transition pair reliability.

3 A small example net will serve to illustrate this idea, with the asssociated place transition

matrix:

P2 p x T- p(P2 )p(t1 ) p(P2 )p(t2)
pLp(P)p(t 1 ) P(P 3 )P(t 2 ),,PxT X000 XN 02

I E 0.04 0.361
P3  = 0.06 0.00

30.00 0.54

i where P(PL) = 0.4, p(P,) = 0.6, P(P 3 ) = 0.7, p(ti) = 0.1 , and p(t 2) = 0.9.

3 One cannot. however, arrive at total path reliabilities via this matrix because interior arc/place

probabilities will be counted twice. For particular place/transition or transition/place pairs, this

I matrix shows the proper reliabilities. Each set of reliabilities is useful. The place x transition matrix

can identify the critical place/transition paris that may be pulling a corresponding overall path

3 reliability quite lower.

Times associated with place/transition pairs can be represented in this fashion (addition

instead of multiplication is used. of course). Again, this identifies critical pairs, but cannot be utilized

to arrive at an overall time unless the double counted interior nodes are accounted for.

3 A short technical paper will be presented elaborating on these points.

3
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Identification of Closed Figures I
Jeff Banfield

Department of Mathematical Sciences

Montana State University

Adrian Raftery I
Department of Statistics
University of Washington 3

I
I

ABSTRACT: A recurring problem in image processing is the recognition and represen-
tation of closed figures. A technique to solve this problem, incorporating several innovative £
new ideas, is illustrated by locating ice floes in a LANDSAT image. Using standard image
processing techniques, the image pixels are classified as ice or water and the edge pixels
(those which define the border between ice and water) are identified. The ice floes are then 3
eroded by the computer to simulate melting the ice. The locations of those edge pixels
which outline a given floe are propagated into the interior of the floe as it melts. This
results an initial clustering of the edge pixels which belong to the larger floes and the elim- 5
ination of edge pixels from noise and floes smaller than a specified size. A new clustering
criteria, based upon principal curves and maximum likelihood estimation, is used for the I
final identification and representation of the floes.

3
I
U
I
I
3

38



MARKOV CHAINS ARISING IN COLLECTIVE COMPUTATION NETWORKS WITH

i ADDITIVE NOISE

R. H. Baran

Naval Surface Warfare Center, White Oak (code U23, rm. 2-250),

Silver Spring, MD 20903-5000

Recent progress in the modelling of connectionist ("neural") networks

5 gives rise to the expectation that future computing systems will employ

coprocessors in which large numbers of memoryless, nonlinear processing

3units interact through plastic connections. Hopfield has drawn attention

to a class of networks, defined by symmetric interconnections and processing

units with binary-valued outputs, which can compute good (suboptimal)

solutions to difficult constrained optimization and decision problems.

These collective computation networks (CCNs) converge rapidly to stable

3states which correspond to local minima of the computational energy, a

bilinear functional of the network state vector. The CCN can be freed from

* local minima by the addition of noise to the input of each processing unit

(or "neuron"). The network state then takes a random walk on a lattice of

2N points, where N is the number of "neurons". Ackley, Hinton, and

Sejnowski have suggested that the long term evolution of the state (K)

3 follows a Boltzmann distribution,

exp(-Ek/T)3 Pr(K-k) - , k=O, 1, .. ., 2 -1,

k

where Ek is the computational energy of the k-th state and T is the
"temperature".

I This paper uses a siL7le, explicit algorithm to study the behavior of

"Boltzmann machines' -3ving various configurations and noise distributions.

3The two-neu:on network is analyzed in detail to obtain an expressio. for

the effective temperature. That the result generalizes to larger networks

i is verified by Monte Carlo calculations in which the randomly sampled state

exhibits a distribution that is statistically close to the theoretical.
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Statistical Learning Networks: A Unifying View
Andrew R. Barron

Statistics and Electrical and Computer Engineering Departments 3
University of Illinois

and
Roger L. Barron

Barron Associates, Inc.
Stanard ville, Virginia

We trace the history of artificial neural network models from the viewpoint of 25 years of
involvement in the application of these models to curve-fitting problems (involving regression, 3
prediction, classification, or guidance and control) in specific projects for government and industry.
Although originally some of these network models were derived from analogies to neurophysiological
systems, the driving force in the development has been practical empirical modeling problems. The
characteristic shared by each of these methods is that estimates of functions of many variables are
obtained by the mathematical composition (interconnection) of many simple relationships. It is
therefore suggested that the name statistical learning network rather than neural network more
accurately conveys the nature and purpose of these models. I

It is recounted how the advancement of learning network methodologies has depended on
statistical developments (nonparametric smoothing, model selection criteria, asymptotic theory),
information-theoretic developments (universal data compression, complexity minimization), and m
computational developments (efficient search techniques for multimodal surfaces) as well as
developments in approximation theory (What classes of functions are approximated by functions
expressed by networks?). We describe the surprising similarities as well as the differences between I
learning network models such as fixed polynomial networks (devised by Snyder, Barron et~a. 1964 and
described in Gilstrap 1971), adaptively synthesized neftworks (developed by Mucciardi 1970, Ivakhnenko
1971, and Barron et.al. 1984), projection purssit (Friedman and Tukey 1974, Friedman and Stuettle
1981), and classifiers trained by back-propagation (Rumelhart, Hinton and Williams 1986). A flexible
system of computer programs is being developed to implement these and many other learning network
models according to user specified attributes.

Some approximation theory questions concerning functions represented by networks are I
resolved. A four layer polynomial network of depth 2m+1 and fixed connectivity can uniformly well
approximate any continuous function of m variables on a compact set. Similarly for projection pursuit,
it is known that the theoretical (non-sampling) version approximates any L2 function of m variables
(Jones 1987). A fundamental statistical question remains: Do estimated networks converge to the
unknown function with high probability as the sample size increases without bound? No consistency or
rate of convergence results are yet available for any of these learning network estimators. Recent I
results (Barron 1987) concerning Bayes estimators for nonparametric smoothing and complexity
minimization show promise for helping resolve some of these consistency questions.
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3 Interior Point Methods for Linear Programming Problems

3 Paul T. Bogg
Scientific Computing Division
National Bureau of Standards

Gaithersburg, MD 20899I
ABSTRACT

I The method of centers was first proposed by Huard for convex nonlinear optimisa-
tion problems. A version of the method was shown to be a polynomial algorithm for the
linear programming problem. Moreover, the order of the polynomial is the same as for
Karmarkar's method. In this talk, the basic method as applied to linear programmming
is described and a continuous version derived. The continuous version yields trajectories
from any feasible point in the polytope to the solution. The properties, including the defi-
ciencies, of these trajectories are discussed. A modification that overcomes the difficulties
is proposed and analyzed. Finally, an algorithm based on these results is given and some
preliminary numerical results are presented.
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On Some Graphical Representations of Multivaiate Data

Masood Bolorforoush I
Edward J. Wegman

George Mason University3

The paper presents an implementation of some multivariate graphical techniques written in
PASCAL and developed for the IBM-RT. We have a basic implementation of the parallel coordinate
representation together with some enhancements including brushing, windowing, zooming, and
transformations including Box-Cox and standardization. Also included in our package are scatter plot
diasrams which may be linked in split screen to parallel coordinate diagrams. Some related techniques
which we call color histograms and relative slope plots are also implemented. I

A MONTE CARLO ASSESSMENT OF CROSS-VALIDATION AND THE Co CRITERION

FOR MODEL SELECTION IN MULTIPLE LINEAR REGRESSION

Robert M. Boudreau

Dept of Math. Sciences, Virginia Commonwealth University 3
For selecting variables or model building in the multiple linear regr 5 -
sion situation. Mallows Cp criterion is relevant when the regressors are
considered fixed. When the regressors are random, then cross-validat 1
is more appropriate. Both these methods are often justified on the
grounds that they estimate the unobservable conditional prediction meIh
squared error (PMSE) when predicting new observations using the current
training data set to estimate the parameters. In the fixed case, a 5
theoretical result is given showing that the C. for a given model is R
fact uncorrelated with the training set PMSE. In the case of random
regressors, results of a simulation experiment, with some related -
theory, give evidence that cross-validation (counter to intuition) i
also uncorrelated, or at most weakly correlated, with the PMSE for th
data set.

COMPUTATIONAL EXPERIENCE WITH THE GENERALIZED
SIMULATED ANNEALING ALGORITHM

Daniel G. Brooks William A. Verdini

Arizona State University I
I

Computational results using the generalized simulated
annealing algorithm are presented. The algorithm is used on
a number of well-known test problems and solution results 1
are compared to those of other stochastic optimization
procedures. The sensitivity of the rate of convergence to
changes in several algorithm parameters is presented. 3
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AN ALGORITHM TO IDENTIFY CHANGES IN HORMONE PATTERNS

Morton B. Brown
Department of Biostatistics
The University of Michigan

u Ann Arbor, MI 48109-2029

Fred J. Karsch and Benoit Malpaux
Consortium for Research in

Developmental and Reproductive Biology
The University of Michigan

Many hormones are secreted into the blood in a pulsatile manner: i.e.,
in high concentrations at 'random' intervals. To study hormone levels,
researchers assay its level in the blood at regularly spaced intervals.
The statistical problem is to differentiate between changes in stage
(level of the hormone) and observations influenced by a 'random' pulse
('noise'). An algorithm is described th.t uses regression-like
statistics computed after deleting the most 'extreme' observation
combined with a moving variable-length window to identify rises and
declines in hormone level. The deletion of the most 'extreme'
observation and the use of a variable-length window facilitates the
exclusion of 'noisy' values from the determination of the stage of the
hormone.

Keywords: hormone levels
circadian and annual rhythms
pattern analysis
regression
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BOOTSTRAPPING REGRESSION STRATEGIES 3
by: David Brownstone

School of Social Sciences U
University of California
Irvine, California 92717

Tel: 714-856-6231
Bitnet: "DBROWNST@UCI"

Applied statisticians rarely estimate multiple regression models with 3
a single estimator; they follow complex estimation strategies using many
related models, estimators, and diagnostic statistics. Although it is
known that the use of these strategies can create large biases in standard I
dispersion measures from the final estimates, there has been very little
work on quantifying these biases due to the analytic intractability of the
problem. This paper demonstrates the feasibility of using bootstrap
techniques to estimate the sampling distribution of regression estimation
strategies. A number of Monte Carlo experiments are performed using
Ordinary Least Squares on a small 5 variable regression model. We consider
simple strategies like deleting all variables corresponding to nuisance
parameters with t-statistlcs less than 2 and then reestimating the model.
These experiments verify that common simple estimation strategies can
create large biases in standard dispersion estimators, and the magnitude m
of these biases depends on both the true model design and estimationstrategy.

The bootstrap methodology can be applied to more realistic, complex m
strategies and estimators. We demonstrate this with experiments where
outliers are removed before the models are reestimated. Removing outliers
can either increase or decrease dispersion estimator bias depending on I
whether outliers are unusual draws from a well behaved distribution or"normal" draws from a fat-tailed or contaminated distribution.

The computations for this paper were performed on PC and PC/AT I
computers using the GAUSS programming language. On more powerful
workstations, it would be feasible to bootstrap more complex strategies
found in expert regression systems such as AT&T Bell Laboratory's REX
system. The results of the Monte Carlo experiments performed here strongly
suggest that the biases in parameter dispersion estimators increase with
the complexity of the estimation algorithm. The bootstrap techniques l
presented here are the only practical way to generate consistent estimates
of parameter dispersion for c.;mplex regression estimation strategies.
Bootstrapping could also be icorporated into expert systems for multiple
regression models. This would ireatly improve the reliability of the
dispersion estimates for the *inal model produced by these systems.

4
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I Nois Appreciation: Analysing Residuals Using RS/Explore

David A. Bum
Fanny L. O'Brien

BBN Software Products Corporation
10 Fawcett Street, Cambridge, Massachusetts

I The RS/Explore software is a statistical advisory environment for performing analysis of

general linear models. One goal of data analysis is to find a "model" that adequately describes the

variation in the data. Residual analysis is an invaluable tool in selecting and validating a model. We

will examine how RS/Explore provides a convenient accem to traditional and innovative graphical
displays useful in residual analysis.

ROBUSTNESS OF WEIGHTED ESTIMATORS OF LOCATION: A SMALL-SAMPLE STUDY

Gregory Campbell and Richard I. Shrager
Division of Computer Research and Technology

National Institutes of Health

The problem of location estimation is considered in the context of known as weli as

misspecifled weights. For the one-sample problem, the studied estimators include weighted analop of

the mean, the median, the median of Walsh averages, Huber M-estimators and a computer-intensive

procedure which minimise. the weighted sum of the absolute deviations. For estimators which employ

a weighted median, interpolation to improve performance is considered. The estimators are evaluated

by computer simulation with respect to robustness to weight miaspecification as well am robustness to

outliers. The Kantorovich inequality provides additional insight concerning the small-sample efficiency

of estimators with mispecified weights.

Neural Petri Nets

N. H. Chamas
Wayne State University

It is shown that Petri nets have been evolved into a powerful tool for analysing asychronous

concurrent systems. But the task complexity in digital computers is still high in emulating natural

information processing that humans can routinely handle. Billions of operations in a sequential

machine that may take hours or days may take only seconds for the human brain. This work clariflv

the similarity between the neural cell and a Petri net. The similarity will be illustrated by an example.

Figure I is a typical neural cell while Figure 2 is a typical Nenura Petri Net (NPN).

A,,,

i Figure 2

The places and the transitions in NPN have some properties different from the properties and

transitions in PN. The main difference is that the place in NPN has onle one output and many inputs,

and the transition in NPN has one input and many outputs. These properties make the NPN place

similar to the soma in the neural cell, the transition similar to the hillock, and the arcs similar to the

axon terminals. New rules on concurrency and computation will be illustrated and new approaches will

be proposed.
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APPROACHES FOR EMPIRICAL BAYES CONFIDENCE INTERVALS

WITH APPLICATION TO EXPONENTIAL SCALE PARAMETERS 3
Bradley P. Carlin and Alan E. Gelfand

University of Connecticut n

ABSTRACT 3
Parametric empirical Bayes methods of point estimation date to the landmark paper

of Jamcs and Stein (1961). Interval estimation through parametric empirical Bayes
techniques has a somewhat shorter history, which is summarized in the recent papcr of
Laird and Louis 11987). In the ii.d. exchangeablc case. one obtains a "naive" E8 con-
fidence interval by simply taking appropriate percentiles of the estimated posterior dis-
tribution of the parameter, where the estimation of the prior parameters n
("hypcrparameters") is accomplithed through the marginal distribution of the data.
Untortunately, these "naive" intervals tend to be too short, since they fail to account for
the variabilitv in the estimation of the hyperparameters. That is, they don't attain the
desired coverage probability, both in the classical sense and in the "EB" sense defined in I
Morris (1983).

In this paper we consider two methods for dveloping EB intervals which attempt to '

correct this deficiency in the naive intervals. The first is a "bias corrected naive- method
inspired by Efron (1987). Simply put. this method adjusts the naive intervals using tail
areas determined by the parametric structure of the model and the data. In certain cases
these adjusted tail areas can be found using only a simple rootfinding algorithm; in more
complicated settings one likely needs to bootstrap, as suggested by Efron. The second
method addresses tranformations of the bootstrap observations to match a specified
hvperprior Bayes solution. In this context we clarify the nature of Laird and Louis' IType Ill parametric bootstrap.

To compare the four types of EB intervals (naive. bias-corrected naive, Laird and
Louis, and hyperprior matched) we compute expected "true" tail areas and "true" interval I
lengths (as dcveloped in Laird and Louis), as well as simulated coverage probabilities
and interval lengths. This is done illustratively in the context of confidence intervals for
a vector of exponential scale parameters.
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INFERENCE TECHNIQUES FOR A CLASS OF EXPOENTIAL TIME SERIESI

V. Chandrasekar and P.J. Brockwell

Colorado State University

This research has been motivated by the need to study meteorological radar

3 signals. The power received by a radar backscattered from randomly position and

moving targets is a time series with exponential margional distributions.

Moreover the signals are observed at two polarizations states of the transmitted

3 wave are correlated. The observations are made alternating between the

polarization states and as a result we have missing samples at any polarization.

In this paper we discuss the inference problems associated with the above

described radar signals. The radar signals are obtained from a multivariate

I complex guassian series. We discuss different inference schemes in the context

of applicability in real time implementation for radar systems. Time series data

collected using radar observations of rainfall are used to compare against model

i results.

4
I
I
I

. .. 3 47.al



I
U

Paper for Inerface88 3
IS THERE A NEED FOR STATISTICAL KNOWLEDGE BASE? U

(Abstract) 3

Z. Chen, 3
P. 0. Box 22236, LSU,

Baton Rouge, LA 70893

I
Statistical knowledge base! This means to explicitly store statistical knowledge

in the knowledge base. Although statistics has long been involved in abductive rea- 3
soning (since MYCIN), the involvement of statistics in knowledge engineering is vay 3
limited, and it is almost around the use of Bayes's theorem. The coming of statistical

knowledge base will make statistics the first order citizen in the research of knowledge I
engineering. But is there a need for such a new concept? 3

In this paper we argue that this kind of need does exist. First of all, statisticalI

knowledge exists at its own right, it plays not only a role of measurement. Secondly,

making statistics as the first order citizen means the whole set of matured statistic 5
methods (eg. multivariate analysis) can be used in knowledge engineering. Finally,

the method of abductive reasoning itself can be enriched: for instance, searching in

abduction will no longer be restricted to a bottom-up manner. 5
In the rest of this paper we discuss the possible interface of statistical knowledge 3

base and current existing statistics software. We also compare the similarity and

difference between statistical database and statistical knowledge base.

I
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EFFICIENT DATA SENSITIVITY COMPUTATION FOR MAXIMVM LIKELIHOOD ESTIMATION

3 Daniel C. Chin and James C. Spall

The Johns Hopkins University
Applied Physics Laboratory

Johns Hopkins Road
Laurel, MD 20707

Abstract

3 A computational procedure and numerical results are presented for studying
the effect of outliers or other anomalous data. This procedure is based on a
first order approximation relying on the implicit function theorem, and involves
matrix operations and tensor (Kronecker) algebra. The approximation yields a
closed form expression; in contrdst, the calculation of the MLE depends on
iterative numerical methods such as Newton-Raphson, steepest descent, or

I scoring. The approximation is generally much more efficient than a
traightforward co-mputation of the MLE via such numerical methods. We will

present the results of a numerical study that illustrate the procedure on a
multivariate signal-plus-noise problem with non-identically distributed noise.
Such signal-plus-noise estimation problems arise in many settings (e.g., Kalman
filter model estimation, dose response curve estimation, etc.). In the
numerical study we compared this procedure with the scoring method for finding
MLES. In a moderate size problem we found that the procedure was more than 25
times faster; greater computational savings would be expected in a larger
dimensional problem.

Keywords and phrases: Computational Stochastic Modeling, MLE approximation,5 numerical methods, simulation study, outliers, signal-plus-noise models.
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On the Geometric Probability of Discrete Lines and Circular I
Arcs Approximating Arbitrary Object Boundaries

Chang Y. Choo
Department of Electrical Engineering

Worcester Polytechnic Institute n
Worcester. MA 01609

I
Grid-based line data representation such as chain codes and polycurve codes is an

efficient scheme used for representing arbitrary object boundaries in the areas of image
processing and pattern recognition. Grid-based schemes of representing object boun-i
daries consist of three processes. First, a square grid of proper size is overlaid onto the
boundaries. Second, connected straight-line and circular-arc segments, each of which is
predefined with respect to grid points, are searched that best fit all the grid intersection I
points. Finally, according to predetermined rules, each segment is mapped ino an integer
and stored in a computer. The number of discrete lines and circular-arc segments used as
approximators increases rapidly as the size of "quantization window", in which one curve I
fitting is done, increases.

This paper addresses the issue of calculating the probability of the line and
circular-arc segents based on a model of random line drawing within a quantizationI
window. The model assumes that the original line drawing inside a quantization window
is a random circular arc. According to a quantization algorithm, the probability that each
line or circular-arc segment will be used for approximating the random line drawing is
calculated. The analytical results are verified by various experiments involving real
object boundaries and map contour lines. The results of this paper may be used to design 3
variable-length codes such as Huffman codes.

5
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Computing Extended Maximum Likelihood EstimatesComputin

Generalized Linear Models

I by
5Douglas B. Clarkson

IMSL, Inc.

Robert I. Jennrich
University of California, Los Angeles

3 Abstract

Concern here is with computing the "extended maximum likelihood" estimates
of Haberman (1974) in which one or more parameter estimates is infinite at the
supremum of the likelihood. Theorems justifying the computation of these esti-3 mates are presented in a general context and efficient algorithms for detecting and
computing such estimates in the context of generalized linear models are given.
Examples illustrating the use of these algorithms are presented.

Evaluation of Functions over Lattices

Michael Conlon
Department of Statistics, University of Florida, Gainesville, Fl

5
Consider the problem of evaluating the sum of a function of two ar-3 guments over a subset of a lattice of argument values. A new recur-
sive algorithm has been developed which performs these evaluations
at considerable savings when portions of the lattice can be identified
as contributing little to the overall sum. The algorithm takes full ad-
vantage of adjacency relationships. Each function evaluation after the
first can be performed using prior knowledge of an adjacent function
value on the lattice. The algorithm has been applied to computing
functionals of estimators for comparative binomial experiments. Ex-
act evaluation of expected value, variance, and other functionals can

be computed from basic principles using the new algorithm in one
order of magnitude less time than performing a simulation.
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Extracting Records from New Jersey's Multiple Cause of Death File

Gile Crane

New Jersey Department of Health 3
A simple microcomputer system has been developed using of-the-shelf components which

permits local access in an acceptable time frame to several years of New Jersey multiple cause of death

data assembled and distributed by the National Center for Health Statistics. The system includes

hardware and software and illustrates a trade-off between speed and specificity of acces to

approximately 70,000 records per calendar year. Applications to the epidemiology of drowning and

sickle cell anaemia will be discussed with timing information and order of magnitude rule for similar

investigations. The numbers of causes per person in New Jersey will be summarised in several tables.

If time permits, the further analysis of abstracts from this data will be illustrated by three short
examples: conventional statistical analysis, a computationaly intensive method, and an application of

artificial intelligence technique.

The Effects of Heavy Tailed Distributions on the Two-Sided K-Sample Tost

Henry D. Crockett 5
M. M. Whiteside

University of Texas at Arlington

This paper presents the problem that the k-sample Smirnov test has in discriminating the

ranking of samples from heavy tailed probability distributions. This is accomplished by performing a
multifactored simulation on samples from univariate Cauchy and double exponential distributions.

The test results for 1000 tests are presented for each of seven levels of variance, and five scalar offsets
for both distributions. I

Recent Progress in Algorithms and Architectures

for Time Series Analysis

George Cybenko

Department of Computer Science
Tufts University I

Medford, %Lk 0*2155

617-.381-3214 1

ABSTRACT I
This talk will survey resear:h in the 1980's on fast algorithms and computer architec-

tures for time series analysis. ._pecially from the signal processing perspective. A combi- I
nation of novel ilgoritbms iid new technologies -re making complex computations not

only feasible but performable in real-time by the early 1990's. The talk focuses on tech-

niques involving matrix problems such as eigenvalue,. singular value and structured linear I
system solving. This progress has had added powerful new tools to tle time series

analyst's collection of techniques. 3
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Chernoff Faces: A PC Implementation

Mohammad Dadashzadeh, Ph.D.

I Department of Management Science & Information Systems
University of Detroit
4.001 W. Mc Nichols
Detroit, MI 48221I(313) 9713I

ABSTRACT

The Chernoff faces is a well-known method for graphical representation of

multivariate data in which every muLtivariate observation is visualized

as a computer-drawn face. As in other techniques for graphical

representation of mu.tivariate data, the objective is to assist the

5 investigator in quickly comprehending relevant information in order to

apoly appropriate statistical analysis. In this paper we present a

3 flexible implementation of Chernoff faces on the IBM PC. The program is

written in BSIC and the faces are drawn on the IBM PC's color/graphics

screen. Our contribution by this flexible PC implementation of Chernoff

5 faces is to make a -alme- useful tool more readily accessible to the

statisticians for e-:e-Ientation atio possible refinement.

5
1
I
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A Numerical Comparison of EM and Quam-Newton Type Algorithms
for Finding MLE's for a Mixture of Normal Distributions 3

John W. Davenport
Margaret Anne Pierce
Richard J. Hathaway I

Georgia Southern College

Calculating maximum likelihood estimates for a mixture of normal 3
distributions is one of the most computationally intensive problems in parametric

estimation. Maximizing the corresponding likelihood function is complicated by

singularities and numerous spurious maximizers. Currently the most popular

technique for finding the particular (local) maximizer of the likelihood function that

has good estimation properties is the EM (Expectation Maximization) algorithm.

While this iterative algorithm is extremely reliable and usually finds the "good

maximizer from most reasonable initial guesses, it is very slow in cases where the 5
overlap between component normal distributions is great. Another approach, which

is faster though thought to be less reliable, is to directly maximize the likelihood 3
function using a (locally) fast iterative algorithm based on some variant of Newton's

method. The disadvantage with these quasi-Newton methods is that sometimes the

estimate obtained is very dependent on the initial guess used. This paper presents

some preliminary numerical results indicating the relative strengths and weaknesses

of the EM and quasi-Newton approaches found by testing several methods on a

variety of mixture estimation problems. Comparisons made include the

computational efficiency and the reliability of the approaches tested. The ultimate 3
goal of this research is to learn how the two basic approaches can be hybridized in

order to achieve a method that is both quickly convergent and reliable. 3

5
I
I
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OPTIMIZING LINEAR FUNCTIONS OF RANDOM VARIABLES

HAVING A JOINT Mt2LT:NO!IAL OR MULTIVARIATE NORUAL DISTRIB&'ION

3 eAbstract

JOSEFINA P. DE LOS REYES

A computer method to find vectors S thaat minimize
r

G(s) - a Ce 1 (C1,0 Constants) Subject to P{vs(1-1. ..., r))
1-0 (0ca<l) where vi t .... 0 Vr hDave a jtoint multinomial distribu-

! %ion witz parameters a., "'' Pr (Pi"O, P1 .. Pr a 1) is

obtained by solving the corresponding optimization problem through3. the usual normal approximation. Thus vectors x a.e sought that
r

minimize r(x) X blx1 Cb0 constants) subject %a Pt Xi ° 1-1

I r ' I- r (Xio Il).I-* where x1 .... xr have a joint (degenerate)

multivariate normal distribution with Z(x 1 ) - 0. Vaz(x1 ) r .,

Cov(x .,XJ) - a - -{p p 3 l J .- p)l (:l-pj):

The normal probability integral * r (xito t) is evaluated numer-

5 ically using known computer quadrature codes as (a) one Integral over

a simplex S. (b) linear combination of integrals over multidimensioLal

3 right triangles called "plane orthoschemes." or (c) linear combinat ion

of integrals over multidimensional rectangular do-ainb.

The optimization of 0 and ? is accomplished using binomial

,ables and a bisection method for r - 2. A known nonlinear program

I itt the numerical quadrature codes for (x,,:,.) works well for

r a 3. Tor r. _1 4, the many evaluations o." , ,o ) required by

~~~he Optimization rou-ine make the solution dl-!!.icu -- and expensive

while theoretilir; si=.ple ad feasible. In ttis regard., the

a p p r o x : a t l o t . x . , ) = t x . . . - . ( r -'- ) , w h e r e O ( x )

is the univariL:e stan~ard no=--&: i=tegr&a, is sowz to be accurate

t o Wi%'Zin Z.005 !Or- VL ues o! x, Such that 4r 0.. ': 90 1!.

x, x ]1 . gc , . . r - ", " e r euir ] .o~x=....

vectors x rt1- =n F are tste t eze errc.r r

I "

.raphed !or 3 <_ r , 3a .
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Robustness Study of Some Random Variate Generators 3
LiH-YUAN DENG 3

Department of Mathematical Sciences

Memphis State University l

,emphis, TN 38152 5
ABSTRACT 3

Empirical study using computer-generated random numbers have been widely used

where the mathematics of analyzing a statistical procedure become intractable. '3
There are several generating methods to produce a random sequence with the given

distribution. Most of the methods are based on the generation of independent variate from I
a uniform random distribution. Comparison of the different generating methods usually is 3
done under the criterion of "efficiency". With the wide availability of the mini-, micro. and

personal computers, the cost of computing is reducing dramatically. We will adopt a new 3
criterion of "robustness" to compare the performance of different generating schemes.

They are two basic techniques for generating variates from U(0,1): the congruential 1
methods and feedback shift register methods. None of these is known to generate a "true" I
random sequence. In this paper, using beta random variate generating methods as an

example, we will compare the performances of "robustness" of several generators. It is 3
shown that some methods %%ill perform poorly in the sense that it will quite differ from the

specified distribution %% ..,, the uniform genlerator fails "slightly". 1
Similar study has bu,: done for comparing different generating methods of normal, I

gamma ... distributions. Te framework of analytical and empirical comparisons will also

be discussed. 3

1
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Compression of Image Data
Using Arithmetic Coding

by

3 Ahmed Desoky and Thomas Klein
University of Louisville

Louisville, Kentucky 40292

Abstract

I Arithmetic Coding has been proposed as being more superior in most
respects than the Huffman method. This paper examines Arithmetic Coding as a
possible compression technique to reduce storage requirements of image data.
s Arithmetic Coding models are presented along with their performance inspecific applications. Quality measures are discussed in teems of a
practical image storage and retrieval scheme.

Suary

As image processing projects become more comon on personal computers a
need arises to reduce image storage requirements. As an example, the Univer-
sity of Louisville Medical School has a lab which produces dozens of images
for analysis daily, each image consuming over 1/2 MByte -- enough data to
fill a standard PC hard-disk every week. Only recently have coding
techniques existed to reduce this burden. These methods include relative
encoding, statistical encoding, tree-based encoders and the aforementioned
Huffman coder.

Arithmetic Coding represents a message as an interval of real numbers
between 0 and 1. The longer the message, the smaller the interval needed to
represent it, and thus the more bits needed to specify the interval. An
individual symbol of the message reduces the size of the interval by an
amount determined by its probability of occurrence, with a more likely symbol
reducing the range by less than an unlikely one, and consequently adding
fewer bits to the message.

Both the encoder and decoder know (or can generate) the probabilities
of occurrences of the various symbols, and also that the initial range is
[0,1). With this in mind, the decoder can deduce the final symbol in the. message by the rang= secified, then work backward to reveal the entire
message.

In practice, several factors make implementation of this seemingly
simple technique less than trivial. Underflow and overflow propensities and
overheads caused by message terminators and word-length constraints affect
the performance and efficiency of the method. Minimization of these problems3 requires careful and tedious attention to detail.

The problem of image compression is, in general, very important and
lacks unique solutions. Arithmetic Coding, though displaying admirable
performance characteristics, appears to be less than an accepted method. A
final goal of this paper would then be to examine Arithmetic Coding in detAil
sufficient to appreciate its effective uses and expose its inherent3 limitations.
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AN Li ASYMPTOTICALLY OPTIMAL KERNEL ESTIMATE I
Luc DevroyI

School of Computer Science
McGill University I

ABSTRACT

Let f,.i be the Parzen-Rosenblatt kernel estimate of a density f on I
the real line, based upon a sample of n iid random variables drawn
from f, and with smoothing factor H depending upon the data. Among
other things, we study a fully "automatic" method for picking H such
that for a large class of densities, and for any fixed E>0,

lim sup s +e as n -),
E(inf fIfm-fI) 3

where f,,h is the kernel estimate with smoothing factor h. The H is
obtained simply by minimizing flfh-g,1 I where gm is a kernel esti-
mate with a carefully picked kernel depending upon E and the kernel of I
f,A only. I

Keywords and phrases.
Density estimation. Asymptotic optimality. Nonparametric estimation. Strong conver-
gence. Kernel estimate. Automatic choice of the smoothing factor.

AMS 1980 Subject Classifications. 1
62G05, 62H99, 62G20. 3

I
I

Author's address: School of Computer Science, McGill University, 805 Sherbrooke .Street
West, Montreal. Canada H3A 2K6. 1
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Computing Science and Statistics.

Please reply to: Dr. Allen Don1 77 Mill Spring Road
Manhasset, New York 11030

I A THEORY OF QUADRATURE IN APPLIED PROBABILITY: I
A Fast Algorithmic Approach

Allen Don, Ph.D

Computer Science Department
Long Island University
Brookville, New York

The integral representation of the moments of a
useful class -'f probability density functions is cast in

a canonical form in terms of Gauss-Laguerre quadrature.
This transforms the continuous integration into a sum of
discrete terms, effectively removing the integral sign
and exposing the parameters to numerical investigations.
This allows moments from data to be related to the
unknown parameters via a system of non-linear equations.
This system is easily and quickly solved for the unknown
parameters by any of the numerous non-linear equation
algorithms available for personal computers and main-
frames. In addition, the factorials and gamma functions
found in closed form theoretical moment expressions and
in density functions are discretized in the same manner,

enabling unknown parameters within the arguments of the
gamma to be included in numerical searches. A dominant
ratios method is introduced for determining initial
conditions for the system of non-linear equations to
overcome the notable lack of convergence found in non-
linear system algorithms when initial conditions are not
well-chosen. The notion of finite interval quadrature
Ileads to a correction factor that, with repe3ted
integration-by-parts, becomes an accurate representation
of truncated moments with the quadrature terms vanishing.
The theory is demonstrated by application to reliability
problems, pr,:viding a fast algorithmic approach rather
than the gsr.a rphical approach to parameter
identificat. " !f :ensity functions bothi for truncated

and for ' .

9!
I
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Additive Principal Components: A method for estimating

equations with small variance from multivariate data U
Deborah Donnell

Bell Communications Research 3
Additive Principal Components are a generalization of linear principal components, where the 3

usual linear function, a1X,, defining the linear principal component, £,aiXi, is replaced by a possibly

non-linear function, ,i(Xi), to form an additive principal component E-sj(X). The analogy to the

smallest linear principal conponent is investigated. The functions 0i can be estimated by iterative

application of a scatterplot smooth. This algorithm is equivalent to a power method of estimating

eigenfunctions.

The smallest additive principal components describe nonlinear structure in a high dimensional 3
space. Consequently it is difficult to interpret the estimated functions in terms that are meaningful for

the data analyst. For the additive principal component, the task of interpretation is almost intractable

without tools for real time graphical interaction. With these tools, a pleasingly direct method for

interpretation of the functions in terms of the original variables is possible.

The additive principal component will be defined and the estimation algorithm described. The I
graphical methodology necessary for interpretation of the results will then be described with the aid of

real examples.3

I
I
I
U
I
I
U
I
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MAXIMUM ENTROPY AND THE NEARLY BLACK IMAGE

IDavid Donoho
University of California at Berkeley

and
[n Johnstone

Stanford University

Th maiu nrp estimation princpe has been used to derive a non-linear image
restoration method intended for use when it in known that the underlying scene is necessarily non-
negative. It has been used with success in fields ranging from radio astronomy to spectroscopy. Many
of the successful applications have occurred in settings where the scene is Positive on a sparse set and is
otherwise mostly zero ("black"). Ttiis paper begins a quantitative comparison of the maximurn entropy
method with some other positivity-preserving competitors in some idealised models using a mean-
squared error criterion. The simplest situation is that of a "signal plus noise" model. Camp rison ofI estimation methods over a clas of "nearly black" images can be cast as a restricted minimax problem.
The worst case mean squared error (MSE) for the maximum entropy method, as well as the benchmark
minimalx MSE must be computed numerically for the fractions of non-black pixels of main interest
here. Application of some decision theory significantly reduces the complexity of the necessary
computation. It turns out that MEM does indeed make significant gains over the best linear estimator,
but that it does not get close to the minimax bound. Indeed, a minimum L1 method, obtained by
replacing the entropy functional by the Li norm performs significantly better numerically. Thes
numerical results are confirmed by an asymptotic analysis that matches the numerics almost exactly a
the small non-black fractions at which the computational cost becomes unmanageable. Time
permitting, some conjectures concerning the extension of these results to the more complex settings of
more general inverse problems will be mentioned.

I
The Elimination of Quantization Bias Using Dither

IDouglas M. Oreher and Martin J. Garbo

HUGHES AIRCRAFT COMPANY

ABSTRACT

This paper presents a method for recovering the decimal precision of a

non-observable variable that has been quantized. The technique involves

the addition of a random variate (dither) from a uniform distribution

to the variable prior to quantization. It then shows the conditions

under which the expectation of the dithered quantization function

I equals the value of the variable in question. An expression for the

variance of the dithered quantizatioA function is also derived. The

results are then generalized to the multiple-quantization case.

Examples involving computer communication are presented which show the

application of this technique to reduce the mAgnitude of bias error

caused by roundoff.

1
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GRAPHICAL REPRESENTATIONS OF MAIN EFFECTS AND INTERACTION EFFECTS IN A
POLYNOMIAL REGRESSION ON SEVERAL PREDICTORS. 3

William DuMouchel
BBN Software Products Corporation

The table of coefficients from a polynomial regression analysis having several predictors is hard
to interpret because its focus is on the terms in the fitted equation, rather than on the variables used to 
define those terms. Methods for graphically comparing the effects of each predictor to each other and
to the residuals will be introduced and discussed. The techniques are easy to implement and to
interpret, and have been generalized to provide graphical summaries of interaction effect.

I

RECURSIVE METHODS IN TINE-SEIRIES ANALYSIS

by Quang Phuc Duon 1

Management Sciences Consulting - Bell Canada, Montreal, Canada 1

ABSTRACT

Recursive methods have always played an important role in the analysis of 3
Time-Series data, and that for all three main stages of the modeling

exercise: identification, estimation and prediction. In addition to the

well-known Levinson-Durbin and Kalman Filter algorithms, recent developments,

mostly in the field of Control Engineering, have been useful in obtaining

efficient estimation methods for the general class of A.JMA models through the

so-called Innovation approach. This paper reviews the main ideas behind these

methods, and then focuses on the problem of estimating the parameters of a 1
Moving Average process; some new concepts are introduced, and it is shown that

the resulting algorithm parallels that of the Levison-Durbin algorithm. Other I
important applications of the algorithm in Time-Series Analysis and other

statistical fields are also briefly discussed. 1
Keywords: Recursive Algorithms Levinson-Durbin algorithm; Innovation Process;

spectral Density; Log Autocorrelation.

162



TESTING MULTIPROCESSING RANDOM NUMBER GENERATORS

Mark J. Durst

Lawrence Livermore National Laboratory

Standard system software on current multiproceing computers generates pseudo-random
numbers which are not reproducible; i.e., different runs will produce different numbers. To preserve
reproducibility, multiprocessing random number generators (RNG's) have been proposed. Such L
generators provide many streams, each of which consists of the numbers to be used by a specific task.
These stream should appear individually to be i.i.d. U[0,11, and they should appear to be mutually
independent. Suggestions for such generators include deterministically splitting the sequence of a given
RNG into substreams, selecting 'random" starting points for each substrearn in a reproducible way,
and attempting to create truly distinct streams for each task.

While some theory for such generators can be developed, empirical testing is still important.
Standard empirical tests can be used to asure the quality of the individual streams. We discuss some
methods for testing whether the streams appear mutually independent. Fixed-dimensional tests which
have been used 'longitudinally" to test single streams can be used "latitudinally" to test independence
of streams. Uniformity tests, permutation tests, and partition tests can be used to test a handful of
streams, and collision tests can be used to test about twenty streanm. Tests without fixeddimensionality (runs tests, coupon collector's tests, gap tests) can be used latitudinally on a very large
number of streams, but a more effective use is to modify the tests slightly to fix their maximum
dimensionality. Fourier transforms can be used to derive multiple comparisons tests for crom-
correlations and cros-periodogram tests. These are particularly useful in detecting unexpected overlaps
of streams. As all these tests involve a great deal of computation, efficient experimental designs for the3 testing of many streams must be developed.I

I
An Approach for Generation of Two Variable Sets with a

Specified Correlation and First an3 Second Sample Moments

Mark Eakin
Henry D. Crockett

University of Texas at Arlington

Certain simulations require the generation of correlated variables with prespecified first and
second moments. The first step involved the random generation of two standardized variables.
Second, the first variable was replaced by a linear combination of the two variables such that the
correlation coefficient of the linear combination and the second variable is specified. The variables can
then be adjusted to give the required first and second sample moments without modifying the
correlation equations.
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Asynchronous Iteration
William F. Eddy

Mark J. Schervish
Carnegie Mellon University

An asynchronous iteration is an iterative method in which the succesive iterations are not nec-
essarily performed sequentially. Such methods are particularly well-suited to parallel/distributed
systems in which several iterations can be performed simultaneously, but not necessarily syn.
chronously. Baudet (1978) and Mitra (1987) prove results concerning the convergence behavior
of asynchronous iterative methods for various types of problems. Their results concern the worst
case behavior of the method and require conditions on both the behavior of the iterative process
and the specific problem being solved. We explore stochastic versions of these results in two
specific examples. The examples are

1. Finding the eigenvalues of a large matrix by Gauss-Seidel iterations; and

2. Random affine mappings for producing fractal-like images. I
We implement asynchronous iteration on a parallel/distributed system consisting of powerful

workstations as described by Eddy and Schervish (1986). I
References

Baudet, G.M. (1978). Asynchronous iterative methods for multiprocessors, Journal of the
Association for Computing M[achinery, 25, 226-244.

Eddy, W.F. and Schervish, M.J. (1986). Discrete-finite inference on a network of VAXes. In I
Computer Science and Statistics: Proceedings of the 18th Symposium on the Interface, T.
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Determining Properties of Minimal Spanning Trees
by Local Sampling

William F. Eddy
and Allen McIntosh

Carnegie-Mellon University
and Bell Communications Research

Let o,.d be the fraction of vertices of degree i in a minimal spanning tree on a random sample
of n points in d dimensions. Steele, Shepp and Eddy (1987) show that as n increases anid converges I
with probability one to an unknown constant ai d independent of the sampling distribution. They
perform a small scale simulation experiment to determine ai2, i = 1,. - .,5 by estimating anS2 for
increasing values of n when points are distributed uniformly in the unit square. Here, we estimate aid
directly by systematically sampling the neighborhood ot a particular point of the Poisson process with
constant intensity in d dimensions. We discuss a number of techniques used in order to avoid
generating large samples n > LOs. We also describe our attempts to estimate *., the number of edges
in the minimal spanning tree path between a point and its 0' nearest neighbo,

64



I

I
ON COMPARATIVE ACCURACY OF MULTIVARIATE

NONNORMAL RANDOM NUMBER GENERATORS

U Lynne K. Edwards
Department of Educational Psychology

University of Minnesota
Minneapolis, MN 55455-0211

3 Abstract

There are two easily accessible methods of generating
multivariate nonnormal distributions using the IMSL. They
are: a multivariate extension of Fleishman's (1978) method
with an intermediate correlation matrix adjustment and a
contamination method. Neither of them can produce all
possible combinations of marginal skew and kurtosis, but these

* methods have an advantage over generating the known
extreme distributions when the generation of multivariate
nonnormal distributions with specified intercorrelations and
specified marginal moments is required to simulate a plausible
situation. The MSE for the four marginal moments and for the
intercorrelations were compared between these two methods.
The Fleishman-type method produced sample correlations
much closer to the parameters than the contamination method
but the reversed trends were found among the marginal
moments.

I
I
I
I
I
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"Derivative estimation by Polynomial-trigonometric regression"'

by

R.L. Eubank, Southern Methodist University
and

Paul Speckman, University of Missouri-Columbia

I
Abstract

Let ju be a smooth function defined on an interval (a,b) and
suppose that Yl"... . Yn are uncorrelated observations with
E (yj) -(tj) and Var(y.) - a2 , j-l,...,n, where the tj are fixed m

in (a,b]. Estimation of p and its derivatives by regression on'
trigonometric and low order polynomial terms is considered. Them

polynomial terms are shown to adjust for the boundary bias
problems known to be suffered by regression on trigonometric
terms alone, and the resulting estimate of A has asymptotics 3
competitive with other nonparametric methods. In addition, if
the observations are equally spaced, derivative estimates
obtained by this method are competitive with other methods.

ELECTRONIC MAIL - A VALUABLE AUGMENTATION TOOL FOR SCIENTISTS

Elizabeth Feinler
SRI International

Network Information Systems Center
Menlo Park, California 94025

(Electronic Mail: FEINLER@SRI-NIC.ARPA)

ABSTRACT

Most scientists today have access to personal computers, work stations, or
mainframe computers in the course of their work. Many of these computers also
support electronic mail which can be used to augment the exchange of ideas
among researchers. Electronic mail is easy to use and can serve as a trans-
port mechanism for sending data and information quickly and efficiently across
networks to other scientists or to other computers. Some of the electronic
mail services and programs currently'available to scientists are outlined and
ways in which they can effectively use electronic mail in their work is
discussed.

INFORMATION SYSTEMS AND STATISTICS m
Nancy Flournoy

National Science Foundation

The accessibility of high dimensional data presents new challenges to the Statistical Consulting
Community. Attention to the orgainization of such data results in a novel environment, rich with
opportunities for extending the frontiers of the Decision Sciences. Such a data environment will be
described and consequent new statistical methods which are needed will be sketched.
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A Comparison of Spearman's Footrule and Rank Correlation

Coefficient With Exact Tables and Approximations

LeRoy Franklin

ABSTRACT: Indiana State University

Given two rankings of n objects a widely used nonparametric
measure of association between the rankings is Spearmans-p given
in unnormalized form as S where

n2

S(pq) Z (p -q )

1:1

However an equally simple but neglected competitor is Spearman's
Footrule (1904) and is given in unnormalized form as

n
Z(p,q) jp-qJ.

Diaconis and Graham in a 1977 paper in the Journal of the Royal
Statistical Society recently renewed interest in D by

establishing a limiting normal distribution. Ury and Kleincke in
a 1979 paper in Applied Statistics tabulated the exact c.d.f. for
D for n=2(1)l0 and gave an approximate table for n=11(1)15
generated by Monte Carlo simulation. They also conjectured about
the rate of convergence of D and whether an improvement in
approximation could be obtained by using a +1 continuity
correction factor as is used for Spearman's Rho.

This paper presents exact tables of Spearman's Footrule for
n=ll(1)18 using computer intensive calculations of the exact
permutation distribution. This was done using a specialized
program utilizing both permutations and combinations to achieve
several orders of magnitudes of increase in CPU processing speed
over "direct approach" calculations.

Then for both Spearman's Footrule and Spearman's Correlation
Coefficient the maximum differences between the exact c.d.f. and
the normal approximation is given as well as the maximum

difference between the exact c.d.f. and the normal approximation
w ith correction for continuity. Comparisons are made and graphs
of the differences in the c.d.f. 's are provided for

representative values of n.

I
I
U
I
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Fitting Functions to Noisy Scattered Data in High Dimensions* 3
I

JEROME H. FRIEDMAN U
Department of Statistics

and 3
Stanford Linear Accelerator Center

Stanford University, Stanford, California, 94905 I

U
ABSTRACT

Consider an arbitrary domain of interest in n-dimensional Euclidean space

and an unknown function of n arguments defined on that domain. The value of
the function-perhaps perturbed by additive noise-is given at some set of points.

The problem is to find a function that provides a reasonable approximation to I
the unknown one over the domain of interest. A new approach is presented for
the practical solution to this problem. This method, based on adaptive splines, I
appears to 1-e able to provide smooth, accurate, parsimonious, and interpretable

approximations to a wide variety of functions of a multivariate argument. I

I

- Work supported by the Department of Energy, contract DE-ACO3-76SF00515. 3
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Dimensionality Constraints on Projection and Section Views of High Dimensional Loci

George W. Furnas
Bell Communications Research

IA basic theoretical limitation is shown for the two general graphical techniques for constructing
geometric views of high dimensional loci: PROJECTION and SECTION (called "conditioning" in
statistical contexts) . Basisically, projections can only easily display aspects of structure that are of
low dirensionality. Sections. i.e, intersections of linear subspaces with a locus, can easily display
structure of only low CO-dimensionality (and hence high dimensionality). Fortunately, compositions
of Section and Projection can display aspects of structure of any intermediate dimensionality. These
assertions are proven for fundamental idealization of loci that are arbitrary affine subspaces of a high
dimensional space. The issues introduced by finite extent, by curvature, by sampling and by error
noise are then discussed, basically in terms of notions of scale. Two examples of using the Projection & E1
Section composition technique are given, examining the structure of high-dimensional objects embedded
in a six-dimensional space.

I

BIAS OF ANIMAL POPULATION TREND ESTIMATES

3Paul H. Geissler and William A. Link

U.S. Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, MarylandI
The trend (rate of change) of animal populations is often estimated as

3 ~A, Zi(t+1) Ai &i j

Si 1i
I

where i indexes sampling units, A is the stratum area, E is the predicted count of animals, and ' is the

mean year (5=0). Counts are estimated using the modelUc,(y) = aj 8, e where o. 3, and 8 are the intercept, slope, and observer effect parameters and e

is the error. Parameters are estimated by means of linear regression on the logarithmic scale using the

unbiased estimation techniques of Bradu & Mundlak.

The bias of this estimator was studied using a factorial simulation experiment with lognormal,

Poisson, and negative binomial distributed counts. Bias increases sharply with increasing count

variance. Increasing the number of years reduced the bias but increasing the sample size had no

discernible affect on the bias. Including observer effects reduces the effective number of years. The

direction of the trend had no apparent affect on the bias. The bootstrap was ineffective in reducing the

bias. The use of reduced mean square error estimation techniques instead of Bradu & Mundlak's

techniques was found to increase the bias.
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MIXTURE EXPERIMENTS AND FRACTIONAL FACTORIALS USED TO TAILOR U
LARGE-SCALE COMPUTER SIMULATIONS

T. K. Gardenier, Ph.D. 3
TKG Consultants, Ltd.

301 Maple Avenue West, Suite 100

Vienna, VA 22180

Large scale computer simulations are in widespread and growing use in3

government, business and science. Within the Department of Defense,

the use of simulation is particularly crucial because the real-world 3
scenario of the battle cannot be replicated. Environmental and health

simulations for risk assessment have complex determinants of pollution anl

target sites. Large number of parameters may initially appear to be 3
needed in simulations. Experiment designs, and optimization achieved

through respense surgace methodology, can reduce the final set of 3
parameters in simulations to an efficient minimum.

The objective of this paper is to present the use of several

experiment design procedures, including fractional factorials, mixture

experiments with constrained optimization, and Placket-Burman designs

based on Hadamard matrices as pre-processors to computer simulations.

The methods have been used by the author to (a) minimize the number of I
computer runs, (b) conduct an input-ot, out analysis of model subroutines 3
and measures of merit, (c) check for c.mputational model validity, (d)

design interactive graphical evaluation schemes for the simulation 3
developer and user. These use of these experiment designs as

pre-processors resulted in cost-savings as well as efficiency for the |
...... gs of L'a S.M mob- . 641- -"70 Yrw s e € N-i-
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AbstractI
Acceleration Methods for Monte Carlo Integration in Bayesian Inference

John Ceweke, Duke University

I Methods for the acceleration of Monte Carlo integration with n

replications in a sample of size T are investigated. A general procedure for

combining antithetic variation and grid methods with Monte Carlo methods is

Uproposed, and it is shown that the numerical accuracy of these hybrid methods

can be evaluated routinely. The derivation indicates the characteristics of

Iapplications in which acceleration is likely to be most beneficial. This is

confirmed in a series of examples, in which these acceleration methods reduce

n and the computation time required to achieve a given degree of numerical

3accuracy by up to several orders of magnitude. The methods are especially

well suited to vector processors, and on such processors substantial further

I decreases in computation time are achieved. It is shown that without

acceleration the standard deviation of the numerical error in Monte Carlo

integration is 0(1/nT), and if antithetic acceleration is incorporated it is

0(1/nT2 ). It is conjectured that with the incorporation of grid methods this

standard error is 0(l/n 2 T), and that with both antithetic variation and grid

methods it is 0(l/n 2T2)

171



Higher Order Functions in Numerical Programming

David S. Gladstein

[CAD, Inc.
1000 Massachusetts Avenue

Cambridge, Massachusetts 02138

Conventional algebraic programming languages like C, Pascal, and Fortran have statically defined func-
tions and procedures, which are completely established by the time a program is compiled and linked. In
contrast, Lisp, Scheme, and other symbolic programming languages consider functions to be first class ob-
jects, meaning that they can be used as data and created at run time. Functions which map functions to
functions are said to be of higher order.

Higher order functions arise naturally in many ways. As a case study, I consider the sequential analysis
problem of computing certain confidence intervals using a probability A(z, i):

f - (X-0), for i=; I
t(, f.' = A_i{y)(l -,O(x - y - 0)) dy for i > 2,

where
w O(z - 0), for a < b;
) 0, otherwise,

and
And W f-y)0(x - y 0) for i > 2.

(0 is the standard normal density, (b is the standard normal distribution, and a, 6, and 8 are fixed parameters.) 3
A naive implementation runs in time exponential in i, because each evaluation of fi requires integrating

a function involving fi- I over the interval (a, bl, and so on until fi. To achieve run time linear in i, we must
introduce the complication of saving (or cacheing) each value of each function fi as it is computed. I

Implementing this calculation in C is very tedious, and results in much code tailored to the specific
problem. I show how Lisp's ability to generate functions at run time results in a program with several
desirable properties: 3

1. The structure of the program mirrors the mathematical formulation of the problem. The use of cacheing
functions increases the size of the routine which calculates A(z, i) by only one function call.

2. All integration is performed by a single, general purpose integration routine. This routine is used to
map a function f to another function F(a, 6) ' f(t) di.

3. All cacheing functions are produced by a general purpose function, which maps a function / onto a
cacheing version which produces the same results but caches all computations. The cacheing version is
as easy to deal with as the original function.

4. The array of (cacheing) functions {fJ.... fI is simply computed from their definition. i can be
arbitrarily large, subject only to memory constraints.

The complete Common Lisp source program for the sequential confidence interval problem is presented, I
with a discussion of how the irtpl-fitriration differs in C.

Performance comparisons hrx.',ti a Common Lisp version running on a Lisp machine and a C version
running on various configuratioi:r 1" personal computers are presented.

II
I
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MOVING WINDOW DETECTION FOR 0-1 MARKOV TRIALSI
Joseph Glaz * Philip C. Hormel** and Bruce McK. Johnson***

University of Connecticut and CIBA-GEIGY Corporation

ABSTRACT
I

Let X1 , X2 , be a sequence of 0-1 Markov trials.
The random variable X i represents the number of signals that

were detected at the end of the ith discrete-time interval. The3 k-out-of-m moving window detector generates a pulse whenever k

or more signals are detected within m consecutive discrete-time

intervals. Define Mkm to be the waiting time for detection

using a k-out-of-m moving window detector. In this article we

derive Bonferroni-type and product-type approximations for the

distribution of Mk,m , which in turn yield approximations for

E(Mk,m) and VAR(Mkm). These quantities play an important role

in the design and analysis of the k-out-of-m moving window

detection procedure. Applications to the theory of radar3 detection and quality control (zone tests) are discussed.

I
I

;oseph Asoc.'afe Professor, Department of Statistics,I.iers : nnecticut, Storrs CT .6268.

Philip (,. -'--n-1 is Biostatistician, Marketing Clinical
I Slpport, >'7A-E-E,3Y CorporatLin, Summit NJ 07901.

Professor Bruce McK. Johnson was with the Department of
Statistics, rJnil;ersity of C,.nnecticut, Storrs CT 06268.
Regrettably, he passed away on November 4, 1986.
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Abstract

Software for Bayesian Analysis: I
Current Status and Additional Needs

Prem K. Goel

The Ohio State University

Columbus, Ohio 43210, U.S.A.

We make an attempt to provide comprehensive information about the existing software for data I
analysis within the Bayesian paradigm. The paucity of programs seems to indicate that the Bayesian

software available for widespread use is still in its infancy. We have a long way to go before a general 3
purpose Bayesian Statistical Analysis Package is made available. Alternatives for reaching this goal

quickly are presented in the concluding section.

I
I

I

I
I
I
I
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i Paper

Computational Require-7ents of Inference Methods

in Expert Svste.s: A Comparative Study

U
by

Ambrose Goicoechea
School of Information Technology and EngineeringI George 5'ason University

* Abstract

This paper presents a detailed comparative study of six major, leading methods for
inexact reasoning: (1) Bayes' Rule, (2) Dempster-Shafer theory, (3) Fuzzy Set Theory, (4)
MYCIN Model, (5) Cohen's System of inductive probabilities, and (6) a class of

non-monotonic reasoning methods. Each method is presented and discussed in terms of

theoretical content, a detailed numerical example, and a list of strengths and limitations.

Purposely, the same numerical example is addressed by each method to be able to
highlight the assumptions, knowledge representation and computational requirements that
are specific to each method. Guidelines are offered to assist in the selection of the method
that is most appropriate for a particular problem.I
KEY WORDS: Inference models, expert systems, imperfect knowledge, uncertainty,3 decision support systems, inference netvork, evidential reasoning.

I
I
I

Presented at "- Twentieth. _:v,.posium on tle Interface of Computing
Science and Statistics, Reston, 'r -inia, April 21-23, 198S.
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A Simulated Annealing Approach to Mapping DNA I
Larry Goldstein and Michael Waterman
University of Southern California 3
The double digest mapping problem that arises in molecular biology is an
NP complete problem that shares similarity with both the travelling sales-
man problem and the partition problem. Sequences of DNA are cut at short
specific patterns by one of two restriction enzymes singly and then by both 3
in combination. From the set of resulting lengths, one is required to con-
struct a map showing the location of cleavage sites. In order to implement
the simulated annealing algorithm, one must define appropriate neighbor-
hoods on the configuration space, in this case a pair of permutations, and
an energy function to minimize that attains its global minimum value at
the true solution. We study the performance of the simulated annealing
algorithm for the double digest problem with a particular energy function m
and a neighborhood structure based on a deterministic procedure for the
travelling salesman problem. U

SPACE BALLS!
OR

ESTIMATING DIAMETER DISTRIBUTIONS OF POLYSTYRENE MICROSPHERES

CHARLES HAGWOOD AND SUSANNAH SCHILLER 3
NATIONAL BUREAU OF STANDARDS

GAITHERSBURG, MD 20899

POLYSTYRENE MICROSPHERES, WITH NOMINAL DIAMETERS IN THE
RANGE OF I TO 30 MICRONS, WERE MANUFACTURED IN SPACE ON THE
SHUTTLE CHALLENGER AND ARE CERTIFIED BY THE NATIONAL BUREAU OF
STANDARDS AS STANDARD REFERENCE MATERIALS; THEY PROVIDE AN
IMPORTANT TOOL FOR CALIBRATING INSTRUMENTS THAT ARE USED TO
EXAMINE VERY SMALL PARTICLES. IN ORDER TO BE USEFUL, THEIR
DIAMETER DISTRIBUTIONS MUST BE WELL-CHARACTERIZED. ONE I
MEASUREMENT TECHNIQUE PROPOSED IS TO FORM CLOSELY PACKED
HEXAGONAL ARRAYS ON A MICROSCOPE SLIDE WITH THE SPHERES, MEASURE
THE ROW LENGTHS, AND IMPUTE THE DIAMETERS FROM THESE. THE I
OBVIOUS DIAMETER ESTIMATE IS THE ROW LENGTH DIVIDED BY THE
NUMBER OF SPHERES IN THE ROW. HOWEVER, BECAUSE THE DIAMETERS
ARE NOT IDENTICAL, THERE ARE ALWAYS AIR GAPS IN THESE ARRAYS WHICH
INFLATE THE DIAMETER ESTIMATES. THESE AIR GAPS CANNOT BE
MEASURED BY THE MICROSCOPE, NOR CAN THEY BE MODELLED
MATHEMATICALLY. THEREFORE, OUR APPROACH TO THIS ESTIMATION
PROBLEM IS TO SIMULATE ARRAYS OF THE SPHERES AND DETERMINE THE I
BEHAVIOUR OF THE AIR GAPS. METHODS OF SEQUENTIAL ANALYSIS ARE
USED TO DERIVE ESTIMATES OF THE MEAN DIAMETER AND ITS VARIANCE.

76



COPY ovailoble to DTIC does not

pemit fully legible reproducom

ITIME SERIES IN A MICROCOPIP TER EXVIROPNT

John Henstridg*, Numerical Algorithms Group3Microcomputers provide a major challenge to statistical software

writers not only because of their small memory and relati-el7 poor

compiiers compared with mainframes but also because users hare come

to expect a ,,ery high standard of "user friendliness". This

standard has been set by business oriented software such as

wordprocessors and spreadsheets and compared with these -os t

mainirame statistical software stands up ,,ery poorly. Parti7 this

problem stems from the tradition in statistical computing for

packages to be highly portable and hence make no use of special

facilities in any single computer.

This challenge was encountered when transfering a major times series1
package TSA onto IBM type personal computers. As well as the

obvious need to give the package a more screen oriented appearence

it was found desirable to develop an environment especially for the

most difficult time series problem - time domain and tranfer

function model selection and fitting. This entailed the package

keeping records of the history of the fitting process and enabling3 the user to recall details of statistical importance so that models

could be readily compared and assessed. The numerically intense

nature of most times domain model fitting and the relative slow

speed of personal computers also demanded that the package make

'efficient use of any information previously gained about the series

being ;odeled and pre,ously fitted models.

IA second airea where mlajor enhancement was .-.:nsi.dered necessary wgas

that of graphics. In particular a blend of deiauit graphical styles

I for the first time uier had to be developed in parallel with a

system which gt,,es c,_c .... - ontrol to the ad,,anced user.

Tha F:nal result Is sr=n':. interactwhie zysten ;;hih can perftorm

i most time ierie ae .- az. s :n both frequency and tine domains in a

,a.ncer ,.,hich . -e .roductiity .:F the ita-istician using

El] Henstrid.ci , !.C., t3 2.,T3A, Rn !nter ._'/,, e p. ckaeqe For .. r-e_3~series anaHi3, NiMG, C'xiord.
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ABSTRACT I

A rATA ANALYSIS AND RAYPS AN FRAMEWORK FOR ERRCRS-IN-VARIABLES
John H. Herbert, Department of Energy

,More than fifty years ago Ragnar Frisch, the first Nobel prize

winner in economics, set forth graphical and statistical procedures for

deterrining the effect of errors-in-variables on estimated coefficients

in a regression analysis. The procedures were recommended on heuristic 3
grounds but their statistical properties were not delineated. The

procedures were also viewed as computationally prohibitive. 3
Patefield in a 1981 article in the Journal of the Royal Statistical

,ociety demonstrated that the statistical procedure set forth by Frisch

yields maximum likelihood bounds for a true coefficient. Klepper and 5
learer in a 19R4 Econoitrica article extended the procedure within a

Rayesian Framework. Stewart in a 1981 article in Statistical Science 3
recommended the collinearity indices that are byproducts of the F'risch I
errors-in-variables regression procedure as ideal collinearity indices.

In this paper we will flirst summarize the statistical properties

of the Frisch procedure. Then, a relatively simple corputational procedure

For ohtaining solutions will he examind in letail. This computational 3
procedure yields the collinearity indices. Finally, the methodology will

he applied to an actual nrnolem with real data to demonstrate the usefulness I
rf the procedure is a - tl for a regression analysis. 3

I
I
I
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I ARSTRACT

COMPARING SAMPLF REUSF METFODS AT FHA--
AN EMPIRICAL APPROACH

Thomas Herzog
U. S. Department of Housing and Urban Development

The Federal Housing Administration (FHA) recently

completed a study of its single-family home mortgage

insurance program for investor (i.e., non-occupant) loans.

3 A probability sample of over 6,000 loans was drawn and the

results were analyzed using both Bayesian and sample reuse

procedures. In this work., we compare the results of the

sample reuse methods to each other as well as to the

I Bayesian method. Finally, Monte Carlo methods are used to

I simulate the results to see to what extent the same

relationships hold under various schemes for generating

3 pseudorandom numbers.

I
I
I.
I
I
I
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ABSTRACT FOR THE 20TH SYMPOSIUM ON THE INTERFACE:
COMPUTING SCIENCE AND STATISTICS 1988, RESTON, VA 3

INSIDE A STATISTICAL EXPERT SYSTEM:
Implementation of the ESTES expert system 3

Paula Hietala
University of Tampere

Department of Mathematical Sciences/Statistics I
P.O. Box 607, SF-33101 Tampere, FINLAND

Keywords: Expert systems; Rules, Explanation capabilities

Statistical expert systems are an interesting and novel area of statistical computing today (see e.g.
Chambers (1981), Gale (1986) and Hietala (1987)). However, the implementations of these systems are
often described very cursorily and the reader is left unaware or in doubt of the methods employed as well
as of the inner structure of the system. In this paper we consider the implementation of a statistical expert 3
system called ESTES (Expert System for TimE Series analysis) in more detail. The ESTES system is
intended to provide guidance for an inexperienced time series analyst in the preliminary analysis of time
series, i.e. in detecting and handling of seasonality, trend, outliers, level shifts and other essential 1
properties of time series (Hietala (1986)). Our system is organized so that as much as possible of
knowledge or experience of the user (about the specific time series being considered) is exploited. Even
in the case of an inexperienced user he/she may have plenty of useful knowledge concerning the
environment of the problem in question. However, if there exists a conflict between the initial results 1
computed by the system and the knowledge elicited from the user, then the ESTES system sets out to
carry out more extensive analysis and apply more sophisticated statistical methods. With this kind of
organization we strive for minimizing the number of unnecessary reasoning and calculation steps. 3

The ESTES system has been implemented on Apple Macintosh"" personal microcomputers using
Prolog and Modula-2 languages. We have selected if-then rules for representing knowledge on
properties of time series and their handling. Rules have many desirable features (modularity, U
incrementability and modifiability, see Bratko (1986)). Rules in our system are either of form: 1
RuleName: if condition A then conclusion B, or of form: RuleName: if condition A then action C. The
condition part of a rule may be combined (it can contain and and or operators); moreover, a condition and •
an action usually include an invisible call to Modula-2 procedures. This kind of rules are easily 1
expressed in Prolog: in fact, they are legal Prolog clauses if we define appropriate operators (e.g. :, if,
then). The rule-base of the ESTES system has been organized hierarchically according to (1) the
property being considered, (2) the level of analysis process (whether we performing initial or more U
extensive analysis) and (3) the goal of the analyzing (detecting or handling of the property).

One of the most essential features of an expert system is its ability to explain its own actions. With
this in mind. we have paid special emphasis to the explanation capabilities of the ESTES system. We do 3
not use Prolog's own trace facility but have built an interpreter on top of Prolog. This interpreter 1
manages the reasoning process of the ESTES system: it accepts questions and finds answers. For
%.. ..,mple, user can ask 'why' and 'how' questions ("Why the system inquires this fact?", "How the
system has reached this conclusion?", see e.g. Bratko (1986)); our system's reply consists of displaying 1
a user-friendly form of its inner inference chain with explanations and justifications of those methods that
are used inside the chain.

In the full paper we will decribe in detail the formalisms employed in representing knowledge and 1
the structure of our inference en ,ze. We will also characterize the interface between the rule-base part
(Prolog clauses) and the statisu,:,, part (Modula-2 procedures) of the ESTES system.

REFERENCES: 1
Brako, 1. (1986). Prolog programmin '.K:r artijfcial intelligence. Addison-\. esleyWokingham, England.
Chambers. I.M. (1981). Some thoughts on expert software. Computer Science and Statistics: Proceedings of the 13th

Symposium on Interface. Springcr-Verlag. New York. NY, 36-40.
Gdle, W.A. (ed.). (1986). Artificial Inteiigence & Statistics. Addison-Wesley, Reading, MA.
Hietala. P. (1986). How to assist an inexpenenced user in the preliminary analysis of time series: First version of the

ESTES expert system. Proceedings in Computational Statistics (COMPSTAT) 1986. 7th Symposium held at Rome 3
1986. Physica Verlag. Heidelberg, 295-300.

Hietala. P. (1987). Statistical expert systems for time series analysis. Paper presented at The First Conference on
Statistical Computing (ICOSCO-1). Cesme, Turkey, 3A0March . 2 April. 1987.
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The Data Viewer: A Program for Graphical Analysis

Catherine Hurley

3 University of Waterloo

The presentation will contain descriptions of some graphical methods for analyzing multivariate data

and their inplementation in the data viewer program. The program produces plots moving in real-time

by projecting onto a sequence of user-controlled planes. Multiple plots may be simultaneously

controlled, allowing dynamic comparisons of data sets.

3 The data viewer constructs sequences of planes by interpolating between user-chosen target planes.

Following the proposal of Buja and Asimov (1985), the program interpolates along geodesic paths.3 Available chioces include planes yielding bivariate scatterplots, principal components, or cannonical

variable plots.

U When plots are linked, they may be simultaneously controlled and manipulated. With the data

viewer's object oriented design, such linked plots are easily constructed. As a consequence, data sets

may be compared and related in very general ways.

8

I
I
I
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SPLIrE ESTLIATIN CF DEATH ENSITY i
CENSUS AND VITAL STATISTICS DATA

John ". Hsieh, University of Toronto 3
This caper develops a precise method for constructing period life

tables through estimation of death density functions using spline
method. The paper derives a set of formulas for computing the survival
function from the observed cross-sectional death and population data
in five-year age groupings. A complete cubic spline is then fitted
through the computed survival curve defined on a mesh with n age points
as knots. The two endslopes as boundary conditions are determined from
observed population and death data using the properties of the lifetime
distribution. 7eath density function is obtained by spline differ-
enciation of the survival function. Hazard function is then obtained U
as the ratio of the density and survival functions. The article also
contains spline integration for computing the person-years lived and
the life expectancy as well as interpolation for making a complete
life table from the abridged life table so constructed. The complete
cubic cardinal spline representation allows best approximation
(minimum morm, rapid convergence, etc.) to be simply and stably
computed using existing algorithm. The parameters are determined by
solving the n 2 systems of n-2 linear equations together with the two
boundary conditions for the cardinal spline. The tridiagonal form of
the coefficient matrices allows the linear systems to be easily solved I
using a computer by laussian elimination which simplifies to the
"Thomas algorithm". Furthermore, the diagonal dominance and symetric
characteristic of the matrices guarantee stable results with minimum
accumulation of rounding error.

II
U
3
U
I
U
I
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I
3 Simultaneous Confidence Intervals in the General Linear Model by Jason C. H

In the general linear model (GLM) X = XA + £, Y is a vector of observations, X is a

I known design matrix, a = (31, .... , p) are unknown parameters, and f is a vector of id
normal errors. Suppose A* = (031, ... , 3k) are of interest (k < p); 13i, ... , 3k may be the

coefficients in a response surface model, or treatment contrasts in an ANOVA or ANCOVA
setting. Consider simultaneous confidence intervals e13j e bi ± cs(bj) for i = 1, , k)

where b is the least square estimator of A* and s(bj) is the estimated standard deviation of

bi. The exact coverage probability CovProb = P(Ibi - O3il/s(bj) < c for i = 1, -.. , k), and
thus the critical value c, is computable in real time by quadrature if the correlation matrix R
of b satisfies

3Ifr R= ( 2. .J , ... Xk)

for some = (XI, ... ,X.1)'. In real life R rarely satisfies (1), due to covariates and/or
missing values. Instead of using Schefft's projection method or Sidak's inequality to
bound CovProb below by 1--a, we approximate CovProb by replacing the given R with
the "closest" correlation matrix R' satisfying (1). In the case of the + sign, this is
equivalent to finding an auxiliary variable bo so that (bh, .. , bk) conditional on bo are
almost independent, and conditionally pretending them to be independent in analogy with
Sidak's method. The key is that R' is the 1-factor decomposition of the deterministic
matrix R, which can be computed using existing Factor Analysis algorithms for various3 norms. The case of the - sign, which involves complex integiation, can also be handled.

Simulation shows the approximation to be excellent. For comparing treatments when
I there are covariates (ANCOVA), using a real data set in Scheffi for example, variance-

reduced simulation estimates of true non-coverage probability a are

3 ominala Unbiased Estimate of True a 95% Confidence Interval for True a
0.10 0.10 - 0.000025 (0.0991, 0.1008)
0.05 0.05 + 0.000175 (0.0496, 0.0508)
0.01 0.01 - 0.000125 (0.0096, 0.0101)

Improvement over traditional methods is substantial. For a real data set in Draper and
Smith, for example, the critical value c that determines the half-widths of the confidence
intervals are as follows for various methods:

I Bonferroni Sidak Scheffd Progosed
3.206 3.194 3.919 2.525

I The MEANS option in PROC GLM of SAS ignores the nuisance parameters P3k+1.

Pp in the user-specified model, in order to guarantee that R satisfies (1) in an ANOVA or
I ANCOVA setting. But the resulting b does not estimate * in the user's model, rendering

the confidence intervals produced meaningless. This little known error in SAS casts
doubts on some published findings (e.g. Science 1987, pp. 1110-1 113).

83



The Simulation of Life Tests with Random Censoring

Joseph C. Hudson
GM Engineering & Management Institute

Abstract

n items are placed on test. Each item ramains on test until 3
either failure or removal from test by a random censoring

mechanism independent from the failure mechanism. Such censoring 3
can result from failure of the test apparatus or from failure due

to a failure mechanism independent from the one under study. This 3
paper considers the simulation of such a life test under the

constraint that the number of items censored is a Binomial random 3
variable with parameters n and Pc. where p, is the probability of

censoring. This allows simulations to be run specifying the

expected percentage of censored items.

Simulations are carried out using Weibull* Uniform. Truncated

Normal and Truncated Cauchy failure distributions. The censoring

distribution is taken to be Exponential. With user-specified

failure distribution and probability of censoring, the mean of the 3
censoring distribution is determined so as to enforce the

constraint that PC TCL < Tft ) = p.. Where Tc, and Tfr are the 3
censoring and failure times of the i t' item. respectively. A

failure time and a censoring time are independently generated for

each item, with the smaller of these times taken as the time of

removal from test.

Details of the implementation are discussed and a validation 3
study is presented. An appendix gives mathematical derivations.

The simulation is implemented in Pascal. 3

I
I
U
I
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VISUAL MULTI-DIMENSIONAL GEOMETRY With APPLICATIONS

3 Alfred Inselberg * # & Bernard Dimsdale *

•IM Srikovfie Ca A * DqkW of Compier Sci w
11601 Wilshire Boulevard University of California
Los Angeles, CA 90025-1738 Los Angeles, CA 90024

non-projective mapping RI R2 for any of more general :onvex and nonconvexnopro.tive emNi apinedN R fo anw hypersurfaces is known. There is an algorithm3 A~~~L I positive integer Nv is obtained from new ~ prs ~ ~ ~ ;~
systm o Parlle Coodi~s. Rlatons n Nfor constructing and displaying any point inte.

system of Paralel Coordira es. Relations in N rior, exterior or on a hypersurface belonging to
variables are portrayed as planar "graphs" hav- these class. Computer Graphics implementations
spnigHprufaei '.I h lning certain properties analogous to the carre- will be shown of:
sponding Hypersurface in AR'v. In the plane a wilesh no:

point o-.. line duality leads to efficient algo-
rithms for Convex Merge and Intersection of • the representations,
Convex Sets. A, line in R' is represented by - algorithms,N- I planar points and a hyperplane by N- I • applicatio to Faxplorwoor Data Analysi in St.
vertical lines. These enable some geometrical ttc- , and A
constructions and the representation of where the time and space trajemory inoria-
polyhedra in RN. The representation of a classtionis displayed and usedoin collisionavoid-

3ance (proximity) and routing.

I

I Knowledge-based Project Management: Work Effort Estimation

V. Kanabar
Department of Mathematics

University of Winnipeg

3 Knowledge-based techniques are applied to project management work effort estimation and
resource selection. The estimating proces is one of the most critical and difficult activities in project
management. By integrating knowledge-based technology with project management we provide a
certain deductive capability that is useful in wortk effort estimation. This paper describes such a
model and the statistical techniques used to produce estimates of work effort involved in a project.

II
I
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ABSTRACT3
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I Discrete Structures and Reliability Computation,

James P. JarvisDepartment of Mathematical Sciences
Clemson University

I Douglas R. Shier
Department of Mathematics3 College of William and Mary

The computation of the reliability of a system, in terms of the reliabilities of its
components, has become increasingly important in assessing the performance
of various computer, telecommunication, and distribution networks. For
example, in a typical scenario, the edges of a network are assumed to fail
randomly and independently with known probabilities and it is required to
calculate the probability that the system functions (e.g., supports point-to-point
message transmission).

Unfortunately, the computation of most probabilistic measures for general
networks is mathematically intractable (i.e., NP-hard). Thus it is fairly unlikely
that good algorithms (with time complexity polynomially bounded in the size of
the network) can ever be devised. However, it has recently been found that
"pseudopolynomialw algorithms are possible for certain network reliability
problems: namely, algorithms whose complexity is polynomial in the number of I3 paths or cutsets in the network.

This talk will discuss the role of discrete computation in calculating the
"two-terminal' reliability of planar networks (still an NP-hard proolem).
Specifically, we first discuss data structures for representing, manipulating, and
traversing planar graphs. Such structures are then used to develop highly
efficient methods for generating paths and cutsets in planar graphs. Finally,
certain algebraic structures (lattices) are employed to aid in combining such
combinatorial objects (paths, cutsets) to produce the reliability polynomial for3 planar systems. These methods are applied to some fairly challenging
examples from the literature, and representative computational results are
presented.

I
I
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QUTOMATIC DETECTION OF THE OPTIC NERVE IN COLOR IMAGES OF THE RETINA I
Norman Katz, Subhasis Chaudhuri*, Michael Goldbaum and Mark Nelson**

Dept. of Ophthalmoloav, *Dept. of Electrical Engineering,
University of California, San Diego I

La Jolla, CA 92093

* Radford Company 3
1755 Homet Road

Pasadena, CA 91106 I
Detection and identification of objects in retinal images

plays an important role in assisting physicians in diagnosing
diseases of the eve. Normal objects typically found in these images 3
include blood vessels, the optic nerve and the fovea. Abnormal
objects include hemmorhaqes and lesions. Some progress has already
been reported by different researchers in detecting blood vessels in
these images. However, little work has been discussed in which the optic I
nerve is automatically identified. We have developed a method that

combines image processing algorithms with Bayesian classification
rules to determine the location of the optic nerve in retinal images.

The optic nerve, also known as the optic disk, may be
characterized as a bright, elliptically shaped object in the retinal
image. However, the detection of the disk is often complicated by
the presence of arbitrarily shaped abnormal objects known as lesions.
The size, shape, brightness and color of these lesions vary widely
among different images, according to the nature and progression of I
the patient's disease. For this reason, no single characteristic feature
can be used to correctly identify the optic disk. 3

The proposed method includes five classification
rules, based on certain physiological properties of the optic disk:
(a) size, in terms of major and minor axes of the ellipse; (b) brightness;
(c) color: (d) density of edges includinq ooth the rim of the disk and -
the blood vessels within the disk area; (e) presence of large caliber
vertically-oriented blood vessels directly above and below the disk.
By suitable choice oi weighting coefficients, these rules can be
comoined to determine the maximum likelihood estimate for
classification of the disk. This technique has been found to be
effective in a large numner of retinal images. It is also being I
incorporated into a system ior automatic diagnosis of retinal
diseases.

I
I
I

88



3 The Use of General Modified Exponential

Curves in Software Reliability Modeling

by

U T. M. Khoshgoftaar

Department of Computer Science
Florida Atlantic University
Boca Raton, Florida 33431
Telephone (305) 393-3994

I
In this paper, we develop a nonhomogeneous Poisson process with a mean value

function which has a General Modified Exponential growth curve for the nuber of

detected software errors. This model produces an exponential growth curve (Goal and

3 Okumoto model) and the Logistic and Gompertz models as special cas,s. It should

be recognized that by fitting the Goel and Okumoto model, the Logistic model, or

t the Gompertz model to a data set of software failures,a prior restriction is

being imposed upon the more generalized model. Such restriccons may be Inappro-

priate in any particular application. By fitting the General Modified Exponential

model, the power law parameter, p, is estimated by the data and is not constrained,

possibly incorrectly, to -1 (Goel and Okumoto model), +1 (Logistic model), or zero

(Gompertz model). Therefore, a much wider range of growth curves become available,

offering the possibility of finding a more appropriate functional form in any

* situation.

3 The parameters of this model are estimated using the maximum likelihood method.

Comparisons withother software reliability models are made.

A set of failure data, whir was collected from a real time command and control

3 system, is used to fit each model.

I
I
I
I
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ASSESSMENT OF 3
PREDICTION PROCEDURES IN

MULTIPLE REGRESSION ANALYSIS U
Victor Kipnis U

U
As opposed to the traditional inference a major goal of modern regression analysis

is model building, i.e., obtaining a regression equation satisfying some specified criterion. I
When the purpose of regression analysis is prediction of new observations, model building

is usually reduced to selection of a predictor among the class of potential predictors.

The paper examines the problem of estimating of the mean squared error of prediction 3
(MSEP) for a linear regression predictor chosen by a given selection procedure. The

theory behind the conventional MSEP estimators is not valid when predictor selection and 3
estimation are from the same data. Tho, very selection process affects the distribution of

those estimators and, in particular, leads to their substantial bias when the selection effect

is not allowed for. To be able to get an adequate estimator we bring in the "procedural 3
approach" and suggest that assessment of the efficiency of a predictor should rest on the

assessment of the selection procedure by which this predictor has been chosen, rather 3
than the evaluation of any particular predictor equation. As exact distributional results

are virtually impossible to obtain, even for the simplest of common selection procedures, I
the suggested approach is based on generating bootstrap pseudosamples and applying 3
to them the same selection procedure that was used for the original data. Simulation

results comparing MSEP estimators provided by this method with the conventional ones 3
are described. It is also shown that the presented method may help in finding a good

predictor,

I
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Numerical Approach to Non-Gaussian Smoothing
and Its Applications

i Genshiro Kitagawa
The Institute of Statistical MathematicsI4-6-7 Minami-Azabu, Minato-ku, Tokyo JAPAN

U
Recursive formula for filtering and smoothing of general non-Gaussian state spacemodel can be obtained. The formula can be realized by various numerical ap-
proximation methods. Thus the analog of the Kalman filter and fixed interval
smoothing algorithm can be applied to various time series problems. Some appLi-
cations of the non-Gaussian state space modeling is also shown.

Dynamically Updating Relevance Judgements in ProbabilisticInformation Systems via User's Feedback

Peter J. Lenk
Barry D. Floyd

New York University

A decision maker's performance relies on the availability of relevant information. In manyenvironments, the relation between the decision maker's informational needs and the information base
are complex and uncertain. A fundamental concept of information systems, such as decision supportand document retrieval, is the probability that the retrieved information is useful to the decisionmaker's query. This paper present a sequential, Bayesian, probabilistic indexing model that explicitly
combines expert opinion with data about the system's performance. The expert opinion is encoded intoprobability statements. These statements are modified by the user's feedback about the relevance of
the retrieved information to their queries. The predictive probability that a datum in the information
base is applicable to the current query is a logistic function of expert opinion and the feedback. This
feedback enters the computation through a measure of association between the current query-datum
pair with previous, relevant query-datum pairs. When this measure is based on the proportionalmatching of multiple attributes, the predictive probabilities have a recursive formula that makes the
model computationally feasible for large information bases.

Keywords: Decision theory, Bayesian inference, decision support systems, expert systems, document
retrieval, probabilistic indexing.
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AuthOr: T. Knavb3

Organization: Energy Informatiom Administprtion, Office of Oil & 3as

Title: A Sensitivily Analysis Of The Her indahi Hirschman Index (H-1Z)3

Abstract 3
When comparing the HZ value for a given situation In One lime

period, To another Time perioad, There is a quest Ion as to whon one3

can say a suostantial change has Taken place. If a smail change In a

frome Often results In a large change In the HZ. Then a small change

In The HZ may not mean very much. Conversely, If a largo change In a

frome often results in a small change In The MHZ. Thon one could Say 3
a small change in HHZ may be very important. (Note That If both of

These situations are true, This would be analogous To an hypothesis

test where both The Type I and Type 11 error probabilities are

large.) F'urThor, There Is The Inherent question as To what Is a large3

change and what in a small change. Zn This paper an attempt is made

To answer These questions for given sets a# data from The petroleum 3
Industry, used byj The Energy Information Administration.

Specifically, data were examined for companies by State for a given

product. Companies wore drawn at random with replacement from The

original list of companies for The given State and product. Whon The3

same numor of companies were drawn as orgimal ly found, the MZ was

calculated for This new met of companies. This case, called unreo-5

strlcod," Is only of passlng Interest, as a came where The total

volume for The State and product must be within, way, five percent of3

The original ToTal volume is more relevant to This study. Coeffi-

dentsz of varizTion (CV23 were fownd Cfor different numbers of repli- I
cations). Thu4s, *rto could see what changem in The 1-HI could be expec-

Ted whon companies of the same ty:pe, number, and approximately TheI

so,"* Total volwme ape usod for each State/product.
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3 AN INTRODUCTION TO CARTTM:

CLASSIFICATION AND REGRESSION TREES

UGerard T. LaVarnway
Department of Mathematics

Norwich University
Northfield, Vermont

3 ABSTRACT

The general classification problem may be described as follows:
Given a multivariate observation z which is known to belong to
(emanate from) one of n possible populations (platforms),
determine which population is most likely. The analyst who is
performing this classification has a historic data base of
observations, for each of which the actual population is known,and has suspicions - in the form of prior probabilities-
regarding the likely population of z.

Traditional methods of dealing with this problem often lack
flexibility. Observations, for example, are often assumed to be
normally distributed. Traditional methods typically cannot deal
with observations that contain categorical variables or missing
data in a natural way.

3 The flexible nonparametric approach described in CART
(Classification and Regression Trees (1984) Breiman, et al.,
Wadsworth) will be discussed. The classification rules appear in
the form of binary decision trees which are easy to use,
understand and interpret.

I
I
I

I
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RECOGNITTION FOR ONE-DIMENSIONAL PARAYIET5IC DISTRIBUTIONS

By

Tze Fen Li and Dinesh S. Bhoj 3
ABSTRACT

In the pattern classification problems, it is known U
that the Bayes decision rule, which separates two classes,
gives a minimum probability of misclassification. In this

paper, we assume that the conditional density belongs to
any parametric family with unknown parameters and that the 3
prior probability of each class is unknown. A set of past

observations (or a training set) of unknown classes is used 3
to establish an empirical Bayes decision rule which performs

like the Bayes rule and separates two classes with the

probability of misclassification close to that of the Bayes

rule. Monte Carlo simulation results are presented for
several parametric distributions including normal and I
uniform distributions

I

Key words and phrases: classification, empirical Bayes, 5
pattern recognittion.

author's addresss Department of Mathematics, Rutgers
University, Camden, NJ 05102. Tel:609-757-6439. 3

9
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I STATISTICAL MODELING OF A PRIORI INFORMATION
FOR IMAGE PROCESSING PROBLEMS

Z. Liang

Dept. of Radiology, Duke University Medical Center, Durham, NC 27710

ABSTRACT

Statistical modeling of image processing problems of ill-posed in inverse process
has been enhanced in recent years in terms of maximizing source entropy function
(1-2) and in terms of maximizing data likelihood function (3-4). Although some
effort has been made to consider both the source entropy and data likelihood in-
formation (5-6), statistical modeling of the image processing problems has not
yet been extensively investigated. A formalism of Bayesian analysis incorporating

m the Poisson or Gaussian statistics of observed data accuratly is discussed in de-
tail in this paper on different a priori source distribution probabilistic infor-
mation. Most statistical methods can be derived from this formalism considering
the different a priori source information. Systems of equations determining the
Bayesian solutions were given for the different a priori source distribution in-
formation by maximizing the a posteriori probability given the observed data. It-*
erative Bayesian algorithms to carry out the calculation for the Bayesian solu-
tions were derived using an expectation maximization technique (7). These algo-
rithms were applied to computer simulated phantom imaging data. Improvement in
image processing with these algorithms was demonstrated, compared to those algo-
rithms of maximizing source entropy and data likelihood functions.

(1). R. Kikuchi and B. Soffer "Maximum Entropy Image Restoration I. The En-
tropy Expression" J. Opt. Soc. Am., vol.67, 1656-1665, 1977

(2). J. Skilling and S. Gull "The Entropy of an Image" SIAM Am. Math. Soc.
Proc., vol.14, 169-189, 1984

(3). L. Shepp and Y. Vardi "Maximum Likelihood Reconstruction for Emission
Tomography" IEEE Trans. Medical Imaging, vol.1, 113-122, 1982

(4). A. Rockmore and A. Macovski "A Maximum Likelihood Approach to Transmis-
sion Image Reconstruction from Projections" IEEE Trans. Nucl. Sci., vol.
24, 1929-1935, 1977

(5). B. Frieden "Restoring with Maximum Likelihood and Maximum Entropy" J.
Opt. Soc. Am.,.vol.62, 511-518, 1972

(6). B. Frieden "Statistical Models for Image Restoration Problem" Computer
Graph. Image Proc., vol.12, 40-58, 1980

(7). A. Demspter, N. Laird and 0. Rubin "Maximum Likelihood from Incomplete
Data via the EM algorithm" JRSS, vol.B, 1-38, 1977
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A POOLED ERROR DENSITY ESTIMATE FOR THE BOOTSTRAP 3
Walter Liggett

National Bureau of Standards I
Gaithersburg, MD 20899

Although a bootstrap based on resampling without replacement
can be performed in the case of several small samples, a
bootstrap based on a pooled density estimate is preferable if
pooling is appropriate. In the case considered, the data consist
of a few measurements on each of several dissimilar items, and
the measurement errors are independent and identically 3
distributed. The pooled error density estimate discussed is
computed from first and second differences between measurements
on the same item. Only first differences ana therefore, only
duplicate measurements, are needed if a symmetric error density.
is assumed. An error density that is possibly skewed requires
triplicate measurements on some items. The error density
estimate is based on the orthogonal expansion in Hermite U
functions and on the relation between the characteristic function
of the error and the characteristic functions of the differences.
A bootstrap based on this density estimate is applied in the case
of items each measured three times. In this case, robust
estimates of the item values can be computed. Several functions
of the item values are potentially of interest. The range of the
item values is considered. This is an interesting example I
because of the effect on this statistic of stretched-tailed
error. Even with a robust estimator, the range of the item
values is affected by stretched-tailed error because of the fact I
that robust estimators for samples of size three are not
resistant to multiple contamination.

I
I-
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I
Computational aspect of harmonic signal detection

Keh-Shin Lii

Tai-Houn Tsou

Department of Statistics
University of California, Riverside

IDetecting harmonic signal in a noisy enviroment is a classical problem and an important one.
Typically, the noise process is assumed to be Gaussian. Therefore the analysis is mostly based upon
second order theory such as covariance or periodogram, There are situations where the noise process is
non-Gaussian then we can take advantage of the information contained in the higher order moments to
possibly increase the efficiency of detecting the presence of harmonics.

This paper explores a method using both second order and higher order spectrum to ascertain
the number of harmonics in the presence of non-white and non-Gaussian noise. Computational methods
is discussed. Simulation examples are presented to indicate the effectiveness of the method in
comparison with the classical second order methods.

I9
I
U
I

, I
I
I

I
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IT'S TIME TO STOP

Hubert Lilliefors
George Washington University

This paper addresses the problem of determining the sample I
size to be used (when to stop sampling) when using a simulation to estimate the quantiles of the
distribution of some statistic. Recently Dallal and Wilkinson (1986) used a procedure which started
with a sample size of 50000 and computed a 95% confidence interval for the 99th quantile. If the width U
of the interval was tens than some prescribed width (they used .001) they stopped. Otherwise they
added another 50000 to the sample and tried again. This continued until either their condition was
satisfied or they reached an upper limit on the sample size. 3

In this paper we present alternative procedures for determining when to stop the simulation
which under certain circumstances may have some advantages over the Dallal and Wilkinson
procedure. A simulation was used to compare the various procedures when estimating quantiles of I
several distributions.

For the alternative procedures, we make use of the well known asymptotic (normal)
distribution of sample quantiles. Using this distribution it is straightforward to show that if we require m
a 95% probability that the sample quantile is within a distance B of the population quantile, then the
sample size required is n=p(t-p)(1.96/B*f(x))**2, where x is the pth population quantile.We need am
estimate for the density function evaluated at the population quantile.

Basically two estimators were used. These were the Siddiqui estimator (1960) and a new least
square estimator. We tried two basic procedures. l.The first is a two stage procedure in which a
preliminary sample was used to estimate the density function, which was used to calculate the required U
total sample size. From this the size of the additional sample size needed is determined. This second
sample is drawn and the estimate for the quantile is determined using the two samples. 2. The second
procedure is a three stage procedure in which, after the second sample is drawn,we again estimate the
density function and if a larger sample is determined to be necessary we draw another sample.

The basic conclusion is that any of these procedures works reasonably well. Under certain
circumstances our alternative procedures give improved results. In addition,they require stopping only
once or twice to determine what additional sample size is needed. The Dalal and Wilkinson procedure
will probably require many more such determinations. I

References

Dallal, G.E. and Wilkinson, L. (1986), "An Analytic Approximation to the Distribution of Lilliefors's3
Test Statistic for Normality", The American Statstician, Vol 40, No.4, 294-296

Siddiqui, M. (1940), "Distribution of Quantiles in Samples from a Bivariate Population, 1. Res. NaL 3
Bat. of Siandard, B64, 145-150
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£ A MODEL FOR INFORMATIVE CENSORING
William A. Link3Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel Md. 20708

Suppose that TIT 2 ,...,Tn is a random sample of -lifetimes" (non-negative continuous random

variables) with common survival function S(t) = P(T > t). We consider the problem of estimating

S(-) when the T's are not directly observable; rather, one is able to observe (X 1,6 1),(X2.6 2 )..(Xn,6n)3 where X i < T i and 6i is a binary random variable equalling one if Xi = Ti and zero otherwise.

The problem of estimating a survival function in the presence of random right censoring has been3 extensively studied. The majority of research has centered an the independent censoring model, in

which C1,C2,...,Cn are "censoring times", independent of T1 ,T 2 ,....Tn , and Xi = min (Ti,C1). Under

this model, the Kaplan-Meier Estimator (KME) is the appropriate estimator of S(-).

It is not difficult to envision situI'ation in which the assumption of independent censoring is

inappropriate. However, if the only observations available are the pairs (X,6), the independence

assumption is completely untestable. It has been shown by Cox and Tsiatis that "there always exist

independent censoring models consistent with any probability distribution for the observable pair3 (X.6)" (Lagakos). The consequence of this is that if it is believed that the independence assumption is

unwarranted, an equally untestable assumption about the joint distribution of (T,C) must be made.3 If, however, covariates are observed in addition to (X,6) the situation improves. We consider a

model in which the population is divided into "high-risk" and "low-risk" subpopulations and in which

censoring only occurs on lifetimes in the "high-risk" group. The "high-risk" subpopulation has hazard

function \H(') = mA(.), where A(.) is the population hazard function and m is an unknown constant.

Under this model, the KME yields substantial overestimates of S.

\We consider an alternative estimation procedure in which the parameter m and the survival

function are estimated by self-consistency algorithms.

I!
I
I
I
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Brenda MacGibbon, Susan Groshen, Jean-Guy Levreault, Numerical Algorithms for
Exact Calculations of Early Stooiin; Probabilities in One-Sample Clinical
Trials with Censored Exponential Resoonses *

For some cancers, the existing treatment regimens produce long-term

disease-free survival rates of 80% or better. In this situation a new proto-

col may aim to reduce the amount or duration of treatment, while maintaining

the high disease-free survival rates. Although the primary goal is to 3
evaluate the specific morbitity of such a new protocol, it is desirable to

develop rules to stop the trial if many patients die or relapse early in the

study and to study the statistical properties of these rules numerically.

Since the failure (death or relapse) or success (survival) of the n~kh patient

is not usually observed before the (n+l)sM patient is entered onto the proto-

col, most developed sequential techniques do not apply to the problem. Most

group sequential techniques involve large sample results, inappropriate for 3
small studies. If the survival times of the patients follow an exponential

distribution and the entry times into the trial are Poisson, and if these are 3
independent, then a pure birth-and-death process with a well-defined

transition matrix is an appropriate model. Analysis of the process enables 3
the expression of error rates in terms of the transition probability matrix

and renders these calculations computationally feasible. A conceptually

simple design for monitoring a trial, in which a new treatment is evaluated I
after each observed failure, is presented and algorithms to calculate the

error rates of interest are given. Algorithms for the calculation of the 3
average sample number (ASN), the median and the quartiles of the sample size,

as a function of the ratio of the entry rate to the failure rate, are con- 3
structed. Finally, the methods are illustrated on two examples involving the

design of pilot studies. 5

• To be presented by Brenda MacGibbon, Department of Decision Sciences and
Management Information Systems, Concordia University, Montreal, Canada
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A CLOSER LOOK AT

SYMBOLIC COMPUTATIONI

William M. Makuch
3John W. Wilkinson

I! Corporate Research and Development
General Electric Company

USchenectady, New York
and

I Decisions Sciences & Engineering Systems Department
Rensselaer Polytechnic Institute

i Troy, New York

I
ABSTRACT

For many, symbolic computation, is nothing more than a frustrating
experience. The machine returns screen after screen of unmanageable expressions or
fails on even the most simpliest of calculations. The typical novice user eventually
questions the utility of a computer algebra approach. The problem here is generally
not the capabilities of the symbolic system, nor is it the user's grandiose expectations.
The problem is one of understanding the symbolic computation software and being

I able to successfully comunicate with it. This paper presents an initial exposure to
some of the lesser known details which must be understood if the user intends on
using symbolic systems be.ond the elementary level.

An introductory level understanding of what a symbolic computation system
can do is assumed. This paper then attempts to add a more complete understanding3 of symbolic representation. functional dependencies, evaluation, and simplification.
The relevance of these topics to the computing statistician, as well as the strengths and
limitations of computer algebra approaches, are also discussed. The MACSYMA
system is used for illustrative purposes.
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ANON-RANDOM WALK THROUGH FUTURES PRI CES OF THE 8PRI TISH POUND

William S. Mallios

C~flcrmaState University, FresnoI

During 1984-86, foreign currencies reached record lows against the

JoIlar, then recovered er,-3tically. The period was characterized by highI

volatility and enormous tosses. In such periods, currency modelling--for

Purposes of short term forecasting--would seem a natural recourse.I

However, results of such m,-odelling appear infrequently in the literature.3

Possible reasons are 0 ) that random walk theory prevails (in reality or as

a result of inadequate modellirf9) or 09i that viable models are not3

publicized, Autoregressi1ve-integrated- moving average (ARIrIA)

mrodelling, when ao plied to forecasting 3 particular currency withoutU

regard to relevant, contemporaneous variables, tends to support random

walk theory. Such results are, however, misleading due to interrelations

between leading currencies, precious metals, and their respective open3
"Itee s t

To a!!0w for such irterrelations, a reduced system of equations isI
,Cr led ESch "ecendent v.ariable may be af fected bsy 4ts own lags and5

3rgged shocks and/or trose of other dependent variabCles, either in terms

f' irst order or higher ,er modelling. Higher orler Ierms ;nclude

,'-'.eractlons between ' -_1 .3lriables Analysis results for the British

-curd -C t eo -odl 3rd support the rot~on of second orderU

-Z~e~i~ a-,, r nfzrmat-rn r 12zdatig th'e rrcael is
:,,e-sented in ',arms :-- iclBayes estumation.
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I RANDOM VARIABLES FOR SUPERCOMPUTERS

3 George Marsaglia

Department of Statistics

The Florida State University

Tallahassee, Florida 32303

(904-644-3218)

(marsagl@FSU)I

A discussion of methods for generating random variables in supercomputers, particularly the 205

and ETA 10. Methods that exploit vector processing are well-suited for generating uniform random

variables, both integer and real, and several of them are described. For non-uniform variates, however,

methods that have proved best for conventional computers do not readily yield to vector methods. For5example, the best methods for normal or exponential variates in conventional computers take less than

1.2 T, where T is the time for a uniform variate, yet in supercomputers those methods take relatively3 much longer. Different approaches to reducing these times will be discussed.

,10
I I
I
I
I
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Maximum Queue Size and Hashing with Lazy Deletion

Claire M. Nfathieul and Jeffrey Scott Vitter2 I
Abstract. We answer questions about the distribution of the maximum size of queues and
sweepline processes. Queuing phenomena are widespread in the fields of operating systems,
distributed systems, and performance evaluation. Queues also arise directly as constructs
in computer programs, for example, in the form of sweepline data structures for geometric E
applications, buffers, dictionaries, sets, stacks, queues, and priority queues. The concept of 3
"maximum" occurs in many issues of resource allocation. If the size of the queue represents
the amount of resource used by a computer program or a systems component, then such m
information is important making intelligent decisions about preallocating resources. U

In this paper we study general birth-and-death processes, the M/G/0o model, and a non-
Markovian process (algorithm) for processing plane sweepline information, called hashing with,
lazy deletion (HwLD), introduced recently by Vitter and Van Wyk in Algorithmica. It has U
been shown that HwLD is optimal in terms of expected time and dynamic space, up to a
constant factor; our results show that it is also optimal in terms of expected prea/located space.
Our results also show strong links between the maximum sizes of continuous phenomena and i
of their discrete counterparts.

We obtain an array of results about the maximum queue size using two independent 3
approaches. In our first approach, we develop several formulas for the distribution of the
maximum queue size for general birth-and-death processes (which includes the M/M/oo pro-
cess) and HwLD. The formulas provide exact numerical data on the distributions, and in 3
some cases lead to asymptotics as the time interval grows. There is a common underlying
structure in the formulas for the different models: the transform of interest in each case is
the ratio of consecutive classical orthogonal polynomials. And the particular polynomials 3
involved give a strong link to the maximum size of file histories, as studied combinatorically
by Flajolet, Franqon, and Vuillemin. a

In our second approach, we get optimal big-oh bounds on the expected maximum queue 3
size in the general M/G/ o model (which includes M/M/oo as a special case) by using non-
queueing theory techniques from the analysis of algorithms. We approximate the maximum
que',e size (and, in the case of HwLD, also the maximum data structure size) in a novel way
by sums of discrete quantities related to hashing, specifically, maximum slot occupancies.
(The hashing in our approximation scheme has nothing to do with the hashing inherent in m
HwLD.) Our techniques also seem applicable to other queueing models, such as M/M/I. i

Current address: Laboratoire d'Informatique de 'Ecole Normale Supirieure. 45, rue d'Ulm, 3
75230 Paris Cedex 0.5. France. Research was also done while the author was at Princeton
University and funded by a Proctor Fellowship.

2 Current address: Department of Computer Science, Brown University, Box 1910, Providence, 3
R. 1. 02912. Research was also done while the author was on sabbatical at Ecole Normale
Suprieure and INRIA. Support was provided in part by NSF research grant DCR-84-03613,n
by an NSF Presidential Young Investigator Award with matching funds from an IBM Faculty 3
Development Award and an AT&T resealgh grant, and by a Guggenheim Fellowship.
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I INTRODUCTION TO PACKET-SWITCHING NETWORKS

Jeffrey Mayersohn
BBN Communications Corporation

50 Moulton Street
Cambridge, Massachusetts 02238I (Electronic Mail: mayersohOALEXANOER.BBN.CO[4)

ABSTRACT

Communications networks allow transmission resources to be shared by a large
population of users. Packet switching is a particular type of network
technology in which the data to be transmitted are divided into discrete
units, called packets. These packets independently travel from the source to
the destination, where they are reassembled into their original form. Among
the mathematical problems associated with packet-switching networks are the
design of optimal network configurations and the development of network
control algorithms. An example of the latter type of algorithm is routing,
which determines the path that will be taken by each packet through the
network. Another class of problems concerns the analysis of network perfor-
mance. Packet switching will be discussed and examples of solutions to the
above problems will be discussed within the context of the ARPANET, which wasgone of the first packet-switching networks.

U
Application of Posterior Approximation Techniques3to the Ordered Dirichlet Distribution

Thomas A. Mazzuchi
Refik Soyer

George Washington University

The ordered Dirichlet distribution has been shown to be a meaningful prior l
distribution for the analysis of several important problems in reliability and
biometry. Unfortunately, the relevant posterior quantities can rarely be obtained in
simple closed form. Closed form results that are obtained are often complex and
subject to numerical error due to their dependence on the extreme range of the
gamma function. Often numerical error and computation time increase with the
sample size. In this paper we. explore the use of a posterior approximation
technique recently suggested by Tierney and Kadane (1986) in these cases. We thus
illustrate a multivariate anplication of tt~ese techniques as well as a comparison of
the accuracy of these approximation techniques with the closed form solution.I
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COMBINING KNOWLEDGE ACQUISITION AND CLASSICAL STATISTICAL TECHNIQUES 3
IN THE DEVELOPMENT OF A VETERINARY MEDICAL EXPERT SYSTEM

Dr. Mary McLeish I
Departments of Computing and Information Science/Statistics

University of Guelph

Guelph, Ontario
NIG 2W1

A project was recently begun as the University of Guelph between the departments of Computing Science,
Statistics and the Ontario College of Veterinary Medicine. Equine colic was chosen for a prototype domain, due to
the diagnostic difficulty of predicting true surgical cases. Unnecessary surgeries are costly and can have long term
debilitating effects on a productive animal. A sophisticated medical information system at OVC has been in opera-
tion for 10 years and has collected a vast amount of on-line medical data. Many test results are fed automatically
into the database. It was our intent to design a system which was largely driven by rules and information U
extracted from this enormous statistical source.

The role of probability and statistics in the development of expert systems is discussed in books such as
"Artificial Intelligence and Statistics", by W.A. Gale. The methodologies employed by the early large medical pro- I
jects, like MYCLN (Stanford), often used ad-hoc factors to combine uncertain information and were concerned pri.
marily with imitating the mental reasoning processes of doctors. In a recent paper by Drs. Patil, Schwartz and
Szolovits in the New England Journal of Medicine (Vol. 16, 1987) it is suggested that it is time to link the old with
the new -the old being classical statistical routines, such as discriminant analysis. To quote, "now that much of i
the A.I. community has turned to causal, pathophysiologic reasoning, it has become apparent that some of the ear-
lier, discarded diagnostic strategies may have important value in enhancing the performance of new progams ..." °

To successfully merge the different available approaches is a difficult one, which these authors recognize when they I
state that "an extensive research effort is required before all these techniques can be incorporated into a single pro-
gram". I

The project at hand is using a variety of data analysis techniques, uncertainty management tools and human
expertise to build the type of system just suggested. Discriminant analysis techniques were tried on data sets
involving 45 input parameters in two groups: clinical data, such as pain, temperature, pulse, results of rectal exami-
nations, and pathology data: total cell counts, protein levels, etc. The most significant variables were two very
subjective measures: pain and abdominal distension. The pathology data did not seem to influence the decision
process. The decision tree obtained produced a tendency to over-operate.

In an attempt to discover other relevant parameters and not discount the pathology data a number of other
knowledge acquisition techniques not assuming linearity or normality of variables were tried on the same data.
These included an event-covering method (Dr.Chiu and A. Wong, Pattern Analysis group, U. of Waterloo), an
inductive learning technique (Dr. L. Rendell, University of Illinois, Urbana Champaign) and the learning (max
entropy) approach of R. Quinlin (University of Sydney). These routines did discover other significant factors in the I
clinical data and interesting relationships between variables (clusters). They also discovered significant factors in

the pathology data. Some of these methodologies were less sensitive to missing data than statistical routines, like
discriminant analysis. With some methods, missing data was a very serious problem. As we were not doing I
analysis to strictly publish the statistical results, but to aid us with over-all diagnostic strategy, we constructed
new data sets with estimated missing values. Logistic regression was run on the new data sets to compare results
with the earlier discriminant analysis and this generally gave more informative results.

Other techniques being tried include a Bayesian inductive technique due to Peter Cheeseman. This provides
interesting data classifications not dependent on any form of similarity neasure (distance etc.). These results may
be used in a predictive manner e.g. by noting the occurrence of surgeries in a class and using this as an indicator
for an incoming case found to belong to that class. 1

The above mentioned methods usually discard variables of low predictive power. The uncertainty manage-
ment techniques, often used in expert s%-ytems. include all symptoms and provide mechanisms for combination of
evidence. Bayesian approach. Dempster-Shafer theory., etc). We are now implementing a 'fuzzy approach (using i
fuzzy relations) somewhat like that used in the CARDL-G system in Austria. This is partly to test whether
methods working with very few variables are as useful for diagnostic purposes as methods including all possible
symptoms.

We are now undertaking the difficult task of integrating results from these various methods with medical
expertise to build an on-line system and test it on incoming cases. The full paper will describe the methodologies
and results in more detail along with the design of the expert system. I
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SMOOTHING IRREGULAR TIME SERIES

I by

3 IA. fan McLeod
Dept. of Statistical and Actuarial Sciences

The University of Western Ontario
London, Ontario, Canada, NGA 589

Keith W. Hipel
Departments of Systems Design Engineering

and Statistics and Actuarial Science
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1

5 and

Byron Bodo
Water Resources Branch

Ministry of the Environment

135 St. Clair Avenue West
Toronto, Ontario, Canada, M4V IP5

3 ABSTRACT

In 1979. Cleveland introduced the method of robust locally weighted regression for smoothing data
(z,.V,), £=1,...,r. This method is extended to handle irregularly spaced-seasonal time series. The
smoothed value for the rth year and ruth month is represented as

r ck. - 3.~?7 --. ,.m

where , ', J,,' and , are determined by robust locally weighted least squares. Efficient APL pro.
grams for implementing this procedure are developed. Tests for the absence of moving seasonality
(H.:-, =0) and for the absence of trends (M,:o,=,, ,0) are developed by bootstrapping the regression.
The usefulness of the new methodology for interpreting environmental water quality parameters is dis-
cussed.
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SIMULATED ANNEALING IN THE CONSTRUCTION OF OPTIMAL DESIGN I

Ruth K. Meyer
Business Computer Information Systems

St. Cloud State University
St. Cloud, Minnesota

Christopher J. Nachtsheim 3
Department of Management Sciences

University of Minnesota
Minneapolis, Minnesota

ABSTRACT I
Exact optimal designs have generally been constructed using a
finite design space and various exchange algorithms, which
oftentimes converge at a local optimum. Branch-and-bound methods
guarantee optimal designs, but are computationally infeasible for
large problems. We apply the generalized simulated annealing .
algorithm to the construction of exact optimal designs on both -
finite and continuous design spaces, and evaluate its
effectiveness. We present optimal designs for large dimensional I
problems.
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Minimum Cost Path Planning in the r'-,om Traversability Space

I P. Graglia, A. MeystelDrexel Universy
I Philadelphia, PA 19V104

Abstract

Random traversability space (RT-space) is introduced and developed as the most general spatialIrepresentation for the path planning system of autonomous robots. It is demonstrated that any physical
spatial situation can be mapped into RT-space, and the quantitative model can be built using the
statistical characteristics of the physical spatial situation. A mathematical abstract model of autonomous
robot is explored which is understood as a dimensionless stochastic automaton pursuing a goal while3 modifying its behavior as new information is acquired about its random spatial environment. A
formalism for the automaton is proposed linking the stochastic input with the description of the
automaton vicinity, and the deterministic output with the motion of the robot-automaton. The flow of

information through the system should provide for minimum cost motion of the robot-automaton
toward the goal.

The computation model of the robot-automaton is of interest. A second (generalized) level of
Straversability space is introduced to reduce computational complexity and make tractable the problem

of stochastic minimum cost control. The generalized level of representation is used to guide search in3 the original RT-space. A theorem is proven concerned with the assignment of the minimal bounds of

the search envelope. It is shown that the process of generalization affects the statistical characteristics
of the search space. Comparisons are made between the results of the robot-automaton operation with
different envelopes of search and under different heuristics of search.

A process of recursive generalization is considered in the RT-space which leads to the hierarchical
RT-representation, and to the subsequent recursive hierarchical algorithm of computation. This is done3 with successively smaller envelopes of search and the results are analyzed with respect to relative error
from the optimal path. The system is intended to develop joint hierarchical planning/control sequences

based both upon the knowledge stored in the memory and/or acquired during the robot-automaton
operation. The path planning system combines the spatial map of the vicinity and spatial knowledge
about the larger subset of the environment including the final goal, to form a complete state description

of the system. A goal-oriented procedure of path planning is then applied which generates a sequence
of states which best satisfies the condition of minimum cost goal goal achievement and is consideredIthe path. A variety of simulation experiments is considered for different traversability spaces. The
results of comparison are given with the conventional algorithms of dealing with the problem.
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UNBIASED ESTIMATES OF IIULTIVARIATE GENERAL MOIMENT FUNCTIONS

OF THE POPULATION At) APPLICATION TO S MPLIT WITHOUT REPLACEMENT

FROti A FINITE POPULATION

by

111. I1khatl I
Liberty University

Abstract

Unbiased estimates of the multivariate general moment functions 3
of the population are obtained when sampling from finite populations.

Partitions and power sums are featured. Unbiased estimates of

multivariate cumulnits and moment functions are obtained as examples of

application. 5
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I Symposium on the interface: Computer Science and Statistics

I AUSTRACT

P. Warwick Millar
univ. of Calif.
berkeley, CA 94720

STOCHASTIC TEST STATISTICS

I Stochastic procedures are tests, estimates, or confidence sets which have two

properties: (a) they are functions of the data sample plus an auxiliary random sample

(o) they become nearly non-randomized as the sample sizes increase. Such procedures

arise as numerically feasible, computationally intensive, approximations to numerically

intractable procedures . They often involve iterated bootstrap techniques together

5 Iwith random searches over abstract populations.

Let , P9 (i4.e a family of probabilities on Rd. A plausible test statistic for

3 the null ,typotnesis that the correct model is IPgQ3, might be: Gn

inf sup n a iPn(A) - P,(A)I where the sup is over all half-spaces in Rd and Pn is

tne empirical measure. Of course the null hypothesis would be rejected for large

values of Gn . In most cases of interests wrere d ? 2 and ( is "infinite dimensional"

(i.e., nonparametric) the statistic tn is virtually uncomputable. A related stochastic

goodness of fit statistic with attractive asymptotic properties consists in (a)

replacing the inf in tie definition of Gn by a minimum over a random collection of

9's, consisting of j n bootstrap replicas of a preliminary n'2 consistent estimatorl

of 4, and (o) replacing the sup by a maximum over Kn sets cnosen at random. Val

critical values can then be ootained by bootstrap applied to this (computationally

feasible) stochastic GUF statistic. These stochastic UOF statistics have been

analysed in detail for 'wo particular non parametric models Pg • location models

I on Rd, d-2, and tne llcgistic model.

g This talk surveys sme of these recent results.

I
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BOOTSTRAP PROCEDURES IN RANDOM EFFECT MOMSL$ F'L PARINGI
RESPONSE RATES IN MULTI-CENTER CLINICAL I

Michael F. Miller, Ph.D.
Hoechst-Roussel Pharmaceuticals Inc

Somerville, N.J. 08876

Let <P(j), Q(j)>, j-1,2,--k be population plac treatment 3
response rates (probabilities) at each of k centers ilti-center

clinical trial. Let L(j) - <LP(j), LQ(J)> be the c ling logits 3
(ln(P/(I-P)) of P(j), Q(j) respectively. In this st L(j)'s are

assumed to be random vectors, i.i.d., having common p.d.f. g.

Letting gp, gq denote the marginal p.d.f.'s of LP, L in the no

treatment effect null hypothesis proposed here is g, The estimated

logits from placebo and treatment patients at each ce are given by 3
LH(j) - <LHP(j), LHQ(j)>, j-l,,--k. Conditioned on t , the

distribution of LH(j) is approximately bivariate normal with mean L(j) I
and diagonal covariance matrix Dj containing the estimated variances of

the estimated logits. Based on the rbserved LH(j)'s, estimates of the

joint p.d.f. g, and hence gp, gq, will be investigated. Appropriate

functionals of these estimates will be used to compare gp and gq. The

sampling distributions of these functionals (means, weighted I
percentiles) will be studied using a two stage bootstrap simulation: t
generate population logits from the estimate of g, then generate

success/failure data for each center conditioned on these population 5
logits. A discussion of the computer implementation of this methodology

will be presented along with an analysis of real clinical trial data. m

1
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Title: Computation of the Theoretical Autocovariance Function of
Multivariate ARMA Processes

Author: Stefan Mittnlk

Address: Department of Economics
SUNY at Stony Brook
Stony Brook, NY 11974-4384

Phone: 516-632-7532

3 Abstract

The theoretical autocovariance function is an Important Instrument In
time series modelling. The derivation of the exact likelihood function of
ARMA models requires the specification of the theoretical autocovariances In
terms of the model parameters. The autocovariance function plays also a
crucial role in model identification procedures. Nicholls & Hall (1979)
provide a closed form expression for the theoretical autocovariances of
multivariate ARMA models. Ansley (1980) and Kohn & Ansley (1982) present
rather complex algorithms which are computationally more efficient than the
one in Nicholls & Hall (1979).

Here we suggest simpler closed form expressions that provide more
insight into the relationship of autocovariances and ARMA parameters. They
are particularly useful when estimating moving average parameters via
factorization methods and in evaluating the exact maximum likelihood
function of ARMA models. The results enable us to compare the algorithms of
Nicholls & Hall (1979), Ansley (1980) and Kohn & Arsley (1982) by fitting3 them Into a general framework.

I References I
ANSLEY, C. F. (1980). Computation of the theoretical autocovariance function

for a vector ARMA process. J. Statist. Comput. & SimuL. 12, 15-24.
KOHN, R. & ANSLEY C. F. (1982). A note on obtaining the theoretical auto-

covariances of an ARMA process. J. Statist. Comput. G SimuL. 15,
273-83.

NICHOLLS , D. F. & A. D. HALL (1979). The exact likelihood function of
multivariate autoregressive-moving average models. Biometrira 68,
259-64.
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Abstract On
Increasinq Reliability of Multiversion

lault-Tolerant Software Design by Modularization

Junryo Miyashita
Department of Computer Science

California state University at san Bernardino

Fault-tolerant software achieves its fault-tolerance by
introducing redundancies in software. Well known Fault-Tolerant U
software designs are: 1) N-version programmings, 2) Recovery Block,
and 3) Consensus Recovery Block. These designs all use several
versions of a program to achieve their reliabilities. They shall beE
refered to as "multiversion fault-tolerant software design". Onel
problem of developing multi-versions of a program is the high cost
of development. This paper addresses that problem. Rather than
working on the common requirement specification for a whole program,3
teams of programmers will work on the common specifications for eachi
module in a program. A program consists of a set Of modules. Thiswill enable the modules in each version to be interchangeable.Theoretical reliabilities of modularized multi-version fault-

tolerant software are derived in closed forms. The numerical results
of the modularization effects on the reliabilities on the three well
known multi-version fault-tolerant software are calculated and th4
complete results are given in table forms. The numerical results
show the dramatic increase in reliabilities in each multiversion
softwares. For example:

In N-version programming, Assume R(i,j) - R for all i and j
That is, the reliabilities of each module of each version i
constantly R then for example when R - .90 , 3 (i.e.n-3)original
versions and each version has 2 parts(modules:i.e.m-2) then the3
modularization will increase the reliability of the software by 1.7m
times compared to N-versions without modularization. When n - 4 and m
= 3 then the increase in the reliability is 5.7. If n - 5 and m - 8m
then the increase is about 77 times. If R - 9.8 and n - 5 and m =8
then the increase in the reliablity is about 327 times. So th
numerical results indicate that by modularization any increase in
number of original versions or increase in the number of modules wile
increase the reliability of the software in significant amounts. p
In Recovery Block, the reliability of the software depends on the

reliability of versions as well as the reliability of the acceptance-
test. If the reliability of the acceptance test is low, then noN
increase in the reliability of the versions can increase th
reliability of the software much. Assumming that the acceptance test
reliability is very high or perfect, then the modularization will.
increase the reliability of the software more significantly tha
that of N-version programming. Results to this effect will be given
in the tables.
Consensus Recovery Block overcomes the weakness of the Recoverl

Block by eliminating the heavy dependencies on the acceptance test b
first doing N-version programming.It also eliminates the weakness
of N-version programming on non-agreements by incorporating th)
acceptance test in case of non-agreements. The increase in th
reliability is more significant than either N-version programming
or Recovery Block schemes if the acceptance test is near perfect.
Even if the acceptance test reliability is rather low, it still doesi
significantly better than Consensus Recovery Block without
modularizations.
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ALGORITHMS TO RECONSTRUCT A CONVEX SET FROM SAMPLE POINTS

M. Moore, tcol. Polytechnique and McGill University
Y. Lemay, Bell Canada

IS. Archambault, tcole Polytechnique

Lee C be an unknown compact convex set in the plane and suppose the sample

points, X1 , ... X, are selected independently according to a distribution function F

on RZ whose support includes C. For each sample point, in addition to its coordinates3 it is known if it is interior or exterior to C. Based on this information it is

desired to reconstruct (estimate) C. A similar problem, where only uniform sample
points on C are observed, has been considered by Ripley and Rasson (J. App. Prob.,

I 14, 483-491) and Moore (Ann. Statist., 12, 1090- 1100).

The sample space is made of the vectors (xi. ii . .... Y, i.) where

x. represents the coordinates of the jth sample point, ij - 1 if this sample point is
in C and ij - 0 otherwise, j - i ..., n. Let H denotes the convex hull of tb,3 sample points xj for which ij - 1 (interior points) and let

K - '. (bX: x - xj + A(xj - y), y 6 H, A z 0)I~J EE

where E - (J: ij - 0). The unknown convex set C includes H and is included in

the complement of K. Let V be the set of vertices of H and T be the set of

peaks of K (a peak is a sample point outside C whose removal would change K). It

can be shown that the pair (V,T) is a minimal sufficient statistic for the family

(Pc; C Ed ), being the class of compact convex sets in the plane and Pc is the

probability measure on the sample space given C and the distribution F. A natural3 criteri- to evaluate a reconstruction rule 6 is

(1) R[C,6] - E[m(C a S(x1 , i ... X, i))],

3 m denoting the Lebesge measure and the expectation being with respect to Pc. It

seems difficult to obtain a procedure 6 based on (V,T) which is in some sense£optimal with respect to (1.) (e.g. mimimax).

In this paper we propose three algorithms to reconstruct C. In increasing3 complexity order these reconstructions are:

a) a dilation of H by a .nique factor determined by V,

b) a deformation of H obtained by applying a particular dilation factor to each side

of H; these dilation factors being determined by the appropriate elements of V.

c) an average (Minkowski addition) of two reconstructions, the first being simply H

and the second being obtained mainly from V.

By a simulation experiment these algorithms are compared using a criteria related

to (1). The algorithm c) is quite complex and requires much geometrical computations,

but presents definite advantages in regard to precision and stability.
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Block Truncated-Newton Methods for Parallel Optimisation

Stephen G. Nab I

Ariela Soler

Operations Research and Applied Statistics Department
George Mason UniversityI

Fairfax, VA 22030

I
Truncated-Newton methods are a clam of optimisation methods suitable for large.

scale problems. At each iteration, a search direction is obtained by approximately solving
the Newton equations using an iterative method. In this way, matrix costs and second-
derivative calculations are avoided, hence removing the major drawbacks of Newton's
method. In this form, the al&oriths are well-suited for vectorisation. Further improve.
ments in performance are sought by using block iterative methods for computing the search
direction. In particular, conjugate-gradient-type methods are considered. Computational
experience on a hypercube computer will be reported.
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kn Example of the Use of a Bayesian Interpretation
of Multiple Discriminant Analysis Results

James R. Nolan
Siena College

The use of Bayesian statistics to add additional information about the

i results of a binary dependent variable multiple discriminant analysis

will be detailed using a recently completed study.

Several methods are examined for determining the best discriminant

function, e.g. Wilks' Lambda, eigenvalues, canonical correlation. The usual

5 procedure is to then examine the "confusion matrix" and draw conclusions about

the predictive power of the discriminant function. Far more information can be

obtained by employing Bayesian statistics to examine, for any actual or

E hypothetical case, the probability of obtaining a particular value of the

binary dependent variable. Thus one can obtain, on a case by case basis, a

3 measure of the "strength" of the discriminant function predicted value of the

discrete dependent variable.

Details about the computer statistical software package utilized for

I this analysis will be given and several pages of output will be available in

the form of handouts.

I 17
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Comparison of "Local Model" Classification Methods

Daniel Normolle

Department of Biostatistics

University of Michigan 3
A large Monte Carlo study is reported that compares three "local"
methods (Classification by Kernel PDF Estimation, Cross-Validated U
Nearest-Neighbor Classification, and Tree Classification with
Pruning for Optimality), a benchmark method (Bayes'
Classification Rule), and three "global" methods (Linear
Discriminant Analysis, Logistic Regression, and Quadratic
Discriminant Function on Normal Scores) with respect to their.ability to correctly classify test samples. 3
The data are drawn from a 5x2x2x2x3 completely crossed design,
where the levels of analysis are Distribution Type (Gaussian,
Cauchy, Lognormal, Bimodal, Uniform), Dimension (2, 6), Class-
Conditional Dispersion (Equal, Unequal), Separation of Classes
(Low, High), and Training Sample Size (40, 80, 160). Each design
cell is replicated 100 times, yielding a total of 84,000 I
classification runs. Thus, the experiment compares three local
methods, each with an associated optimizing procedure, on level
ground over a wide variety of data situations. The results of
the experiment are described using statistical techniques (e.g.,
MANOVA) and graphical techniques, such as Andrew's curves. g
The nearest-neighbor and classification tree methods are found to
be roughly equivalent, with the nearest-neighbor preferable on
well-separated data, and the classification tree better with I
larger sample sizes. PDF Estimation is superior to the other two
local model methods on the two-dimensional data, but weakens
considerably on the six-dimensional data. The three local model I
methods are superior to the ordinary Linear Discriminant Function
on non-Gaussian data, but are bested by the use of the Quadratic
Discriminant Function on the Normal Scores almost uniformly.

I
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Mice, rain forests and finches:5 experiences collaborating with biologists

Doug Nychka
North Carolina State University

Department of Statistics

In the first part of this talk I would like to discuss
some of my experiences working with biologists in cancer research,3 tropical ecology and population genetics. Besides describing some
of the new statistics that have been developed, the role of
computing in these projects will also be stressed. With the
proliferation of microcomputers, researchers are often able to
collect novel experimental data. It is a challenge to
statisticians to develop the tools to alalyze these more complex
experimental results. The second part of this talk will give some
details about using projection pursuit techniques for estimating
fitness surfaces in population genetics. When the smoothness of
the ridge functions is chosen adaptively by cross validation,
projection pursuit becomes a computationally intensive technique.
As an example, the overwinter survival of song sparrows is related
to various morphological measurements. This relationship is
imp'rtant because it may suggest what characteristics are being3 favored through natural selection.

Image Analysis of the Microvascular System
in the Rat Cremaster Muscle

by

C. O'Connor, P. 0. Harris, A. Desoky, and G. Ighodaro

A VAX-based imaae processing system has been developed for the digitiza-tion and analysis of the microvascular system in the rat cremaster muscle.I

These are imaqes of olood vessels which are less than one millimeter in dia-
meter. The purpose of this system is to obtain quantitative morphometric
data on the microvascular system wh'ich cannot be easily obtained by manual
methods. Animal studies have shown that microcirculation can be used in the
detection of certain systemic vascular disceases such as diabetes mellitus
and hypertension. These diseases involve major disturbances in the dimensions
and the distributions of microvessels. The developed techniques are being

* used to determine the blood vessel distributions for a number of samples.
Statistical testing will be made on samples of images comprising diseased and
nondiseased animals, to determine which image component parameters best dis-
criminate diseased and nondiseased samples.
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Statistical Computing on a Hypercube 3
George Ostrouchov, Oak Ridge National Laboratory

A hypercube parallel computer Is a network of 2m processors, each with only
local memory, whose activities are coordinated by messages the processors send
between themselves. The interconnection network corresponds to the edges of an
n-dimensional cube with a processor at each vertex. Some recent experiences and
results in developing a hypercube algorithm for iterative proportional fttng of
large Poisson regression problems will be discussed. The algorithm s implemented
on a 64-procesor WTEL IPSC hypercube.

Empirical Likelihood Confidence Regions 3
Art Owen

Dpartment of Statistics
Stanford University

An empirical likelihood ratio function is identified and used to obtain confidenc regions for
vector valued statistical functionals. The result is a nonparametric version of Wik&' (1938) theorem
and a multivariate generalization of Owen (1987). Cornish-Fisher expansions show that the empirial
likelihood intervals for a one dimensional mean are less adversely affected by skewnem that are those
based on student's 8 statistic. An effective computational strategy is presented for maximising the
empirical likelihood ratio function. The main tool is a dual problem of smaller dimension for which
there are algorithms that converge to the unique global solution from any starting point. The
technique is used to justify nonparametric intervals for variances, correlations and regression
parameters.

Newton Methods for B-Differentiable Functions: Theory and Applications

Jong-Shi Pang 3
Mathematical Sciences Department

The Johns Hopkins University I
Baltimore, MD 21218

I
ABSTRACT

In this paper, we extend the classical Newton method for solving systems of nonlinear I
equations to the class of problems with B-differentiable functions. Such functions were
defined by S.M. Robinson and possess differentiability properties weaker than Frechet-
differentiability. We demonstrate that all the basic convergence properties of the classical I
Newton method and its many modifications are preserved in the extension. We discuss
applications of the results to many problems in mathematical programming. These appli-
cations lead to interesting second-order active-set.Newton-combined methods for solving
the problems discussed.
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Abstract for:
An Approximate Confidence Interval for the Optimal Number of

Mammography X-ray Units in the Dallas-Fort Worth Metropolitan Area
Roger Peck, University of Rhode Island

The American Cancer Society was interested in geographically
locating mammograpny x-ray units in a five county area of the Dallas-
Fort Worth metropolitan area based on 1980 census tract data
consisting of the x,y co-ordinant location (adjusted to reflect real
distance) of 376,256 women aged 35 to 65. We decided to determine an

approximate confidence interval for the number of units that would be
needed to insure proper coverage of the area and yet be cost
effective.

This is a clustering problem in which the optimal number of
_ clusters (the number of units that the area can support) needs to be

determined along with their respective cluster centers (the locations
of tne units). The quality of any clustering is measured by a loss
function which takes into account both the cost of operating the units
and tne cost associated with the likelihood of a woman not using one
of the units. Peck, Van Ness, and Fisher (1988) have shown that a
"best" clustering can be obtained by minimizing this loss function.
They have also developed a bootstrap-based procedure for obtaining
approximate confidence bounds on the number of clusters in the "best"Iclustering.

In this problem, tne two cost functions can easily be determined.
The first cost function can be determined from the fact that the units
cost approximately $300,000 for startup and $100,000 per year for
personnel and maintenance. It can be argued, that the other cost
function is a function of the distance a woman lives from a unit, that
is, women living near to a unit are more likely to use it than women
living further away. Given the cost functions and the census tract
data the approximate confidence interval for the optimal number of
units can be determined along with their corresponding cluster
centers.

Key Words: Cluster Analysis; K-means Clustering; Bootstrap;
Confidence Interval; Simulation Study.
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Statistical Methods for Document Retrieval and Browsing
Jan Pedersen, Xerox PARC, J.W. Tukey and P.K. Halvorse

I will discuss the interaction between statistics and the vision of document retrieval and

browsing currently being developed at Xerox PARC as part of a research initiative examining the
implications of the -paperless office. Given that filing of extremely large volumes of textual and
graphical information will soon be feasible, if it is not already so, the problem of "unfiling" will assume

greater importance.

The PARC vision of retrieval favors high band-width interaction with the user rather than the
traditional emphasis on query languages. It is thought that the combination of certain aspects of

computational linguistics to extract a meaningful summary of the content of a document and
interactive subset selection will out perform traditional keyword based queries. I will discuss one such
retrieval and browsing technique based on content word triples.

I
U

Estimation of the variance matrix for maximum likelihood I
parameters by quasi-Newton methods

Linda Williams Pickle 3
National Cancer Institute

Garth P. McCormick
George Washington University

Much work has been done to develop methods for solving unconstrained optimization problems
that do not require specification of second derivatives of the objective function, which can be extremely
complex. While the rate of convergence of these quasi-Newton methods to the correct solution vector I
has been shown to be superlinear, little research has been done on the behavior of the convergence of U
the inverse Hessian approximation to its true value. These optimization methods are now being used
in new microcomputer statistical packages to calculate maximum likelihood parameter estimates, and 3
the resulting inverse Hessian matrix is being used as an asymptotic variance estimator for the

parameters. We have examined the behavior of this matrix approximation for several representative
problems. Comparison of known analytic results to results from the BFGS quasi-Newton method using
an optimal step size suggests that after the first n iterations (n = number of parameters to be
estimated) the matrix approximation then converges at about the same rate as the parameter vector.
We examine several functions useful as candidates for additional convergence criteria to ensure
acclracy of the variance matrix approximation in practice or to identify situations where the 3
approximation might be poor. U
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Exact Power Calculation for the Chi-Square Test of TWo Proportions

Carl E. Pierdiala
Food and Dag Adnini tion

3 In calculatir the power of the Pearson Chi-Square test of two
independent proportions, it is usual to use an approximation. This
can speed up the ca putations and simplify progrui. At times,
however, it is useful to directly ccpite the exact power. For
example, one may wish to assess an aproximation's adequacy in a
specific situation. Thus, an APL program was developed to do exact
po .r calculations on an IBM PC/AT. it gives accurate and reasonably
fast omputaticns. The exact power values for certain c:. mustazle
are comared to the crresporndinq values obtained using an
a~ro~x~iation based on the are sin transformation. It is s~hon that
this approximation is quite inaccurate in sm situations. Also, the
program is used to d-_ostrate that the exact size of the test can
differ dramatically from the nominal size.

Bootstrapping the Mixed R gremuion oael

3 with Rferece to

the Capital and Vhe,y C metarity Debate*

Wilfrid Laurier University

ABSTRACT

This study empirically investigates the usefulness of bootstrapping the
standard error of estimates of the Hicks-Allen elasticity of substitution
(AES) as obtained from the Mixed Regression model, with specific reference
to the capital-energy complementary debate. This is accomplished by obtai-
ning the bootstrap standard error of estimate of the AES for capital and
energy in the cost-share equations when homogeneity and symmetry con-
straints are imposed stochastically over 500 simulation runs as opposed to
deterministically, which earlier studies assumed. Our results show that
the bootstrap provides an accurate method of obtaining the standard error
of estimate (SEOE) of the AES while the asymptotic formula can overestimate *
the small sample SECE by over 70 -percent. Based on interval estimates of
the AES for capital and energy the bootstrap SEOE cannot reject the substi-
tutability hypothesis even though the point estimate does support the
complementarity hypothesis. The data generating processes used in the
simulations are based on previous studies by Berndt and Wood (1975, 1979),
among others.
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ABSTRACT
Classifying linear mixtures with an application to

William S. Rayens

University of Kentucky

This paper proposes an elegant, get straightforward model for

classifying linear mixtures. A linear mixture is defined as

a random vector y in which the variables are a (nonnegative)

weighted average of corresponding variables, assumed to

characterize g component groups. These weights are referred

to as -mixing proportions". The model seeks to identify the U
mixture constituents and estimate the mixing proportions. it

is demonstrated within the context of high resolution gas

chromatography and the problem of identifying the p
constituents in polychlorinated biphenyl mixtures.

Structure and Finiteness Conditions on Graphs

Neil Robertson
Department of Mathematics

Ohio State University

Graphs are finite objects consisting of two sets, a vertex-set and an edge-set; where each edge is
associated with two (not necessarily distinct) vertices. Such objects are ubiquitous in the real world
and lend themselves readily to algorithmic questions concerning certain structural properties they may U
or may not possess. Through joint work with Paul Seymour of Bell Communications Research over
the past six years a very extensive theory has been developed of certain types of graph structures
studied in combinatorial optimization. Three closely related kinds of theorems have resulted; (1)
structure theorems for which, if a graph does not have a certain type of internal structure then it
possesses an external structure of a certain type, (2) finiteness theorems which say that for a given
external structure there is a finite number of minimal graphs not possessing that structure (obstacles), I
and (3) algorithms, running in polynomial time, which given any finite graph and any fixed structure

type either exhibit the structure on the graph or in obstacle to the structure within the graph. These
algorithms are developments of results dating back up to sixty years and answer several longstanding
open questions. They also have some unusual features of interest to the general theory of algorithms I
which has been developed so extensively in recent years.

1
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3 on The PzobabLlity Intaqrals Of The Multivariate Normal;

The 2n-Tree and The MontGe-Ca&rlo Techniques.

Dror Rom and Sanat Sarkar

I Department Of Statistics, Temple University, Philadelphia, Pennsylvania.

3 Abstract

I Two techniques are proposed for computing probability integrals of the

multivariate normal distribution. The first technique is based on the

2n-tree scheme and is shown to perform well even for the near singular

I distribution. The technique employs a tree structure to represent the

multivariate density. This representation gives a fast and efficient

I partition of the n-space and in general requires substantially less

computations than other available techniques.

The second technique is essentially a variance reduction improvement of

I the Monte-Carlo integration method. As a technique based on simulation the

Monte-Carlo method suffers from rando:: variability, however it is still a

I usefull approach when the dimensionality is high. The proposed technique

is shown to reduce the variance of the Monte-Carlo estimator on a wide

interval.

I Both techniques can be sllightly modified for other distributions and can

be easily programmed and e:xecuted on main frame as well as personal

I computers. The algori,:n,., 3nd computer programs will be available.

I12
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THE EFFECT OF SMALL COVARIATE-CRITERION
CORRELATIONS ON ANALYSI3-OF-COVARIANCE I

M. Roving, A. von Eye, P. Wood College of Human Development
The Pennsylvania State University, University Park, PA 16802I

In uncontrolled studies, those studies in which individuals are

not randomly assigned to experimental and control groups but are

members of different levels of categorical variables, analysis of

variance is most often suggested as the appropriate data analytic tool
for assessing group differences on any dependent or criterion I
variables of interest. When variables may be identified that are

related to the criterion variable and may act as plausible,
alternative hypotheses analysis of covariance has been suggested. In
theory, this analysis may have some effect in "equating" groups I
according to their scores on the covariate. However, since ANCOVA was
designed to increase the precision of randomized experiments, at least
two questions arise: I) Is this technique appropriate in uncontrolled I
studies? 2) Must thm size of the covariate-criterion relationship
meet a minimum valuel To assess these questions, a simulation was
performed to indicate the degree of bias in the analysis of covariance
under the condition of low covariate-criterion correlations.

The method used in this study looked at the change in the

significance levels of the F-test of the ANOVA by adding a covariate
that has a non-zero, but non-significant correlation with the
criterion variable. By adjusting for nothing other than sampling
fluctuation, an estimate of the degree of bias associated with theI
inappropriate selection of a covariate was obtained.

To show the degree of bias introduced when controlling for
statistically non-significant relationship, a simulation study was run i
in which a criterion variable was created by generating a random
normal variate and assigning a group number (either I or 2) to each I
value of the variate. A constant was then added to the second group
to create the group difference. The constant was incremented by .."5
until the difference between the groups became statistically
significant at tne p,.001 level. Covariates were then selected by I
generating a set of random variates and selecting those that had
correlations ranging -rcm r=.01 to a level just under :ne p, .05 level
of significance.

The results of - study showed that by covarying random
fluctuation out o- i :=,e-cent ,ariaole, one can artificiailv decrease
the siZe of F-test ze,--naor. Thig is tantamount to an abi-t,'arv U
oecision to Make . term of tme -40VA smaller in the absence of
any reasonable c:.a- 3
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The Effect of Measurement Error in a Machine Learning System

David L. Rumpf
I Mieczyslaw M. Kokar

Department of Industrial Engineering and Information Systems
Northeastern University

Boston, MA 02115

I ABSTRACT

This paper deals with the problem of reasoning about

I conceptualizations (sets of relevant parameters) of physical

processes. The problem is discussed in the context of the COPER

I discovery system. COPER conjectures parameters characterizing

physical processes and the functional relationships among them. The

I COPER system utilizes the idea of changing representation base to

determine the arguments of invariant functional descriptions. It must

E handle two types of uncertainty - about relevance of parameters and

i measurement error. A statistics/probability approach has been used to

estimate the effect of measurement error in the COPER system. The

I partially adequate results of this approach are presented.

Alternative approaches to the measurement error problem will be

I suggested and discussed.

I
I I
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Maximum Likelihood Estimation of Discrete Control Processes:
Theory and Empirical Applications m

John Rust
Department of Economics
University of Wisconsin

Consider the following "identification" or 'revealed preference' problem. We observe data
generated by agents solving infinite horizon markovian decision problems. At time t each agent I
observes a vector of state variables (x1, eg,) and chooses an action it from a finite set of alternatives to
obtain a reward which depends on (x,, et, i,) and a vector of parameters 01 which are known by the
agent but not by us. The state variables evolve according to a markov process with transition density
which depends on a vector of parameters (92, 93) also known by the agent but not by us. Our data
consists of independent realizations {i,,, xi}, t =1, ... , T, for each agent 1, I1, ... , L. Our problem
is to go "backwards' and use this data to infer the unknown parameter vector 9=.091,02,a 3, where
OE (0, 1) is the discount factor. This paper derives a nested fixed point maximum likelihood
algorithm to estimate the unknown parameters of a subclass of these "discrete control processes". We
show that either as T or L - oo the estimated parameter vector 0 converges to the true parameter
vector with probability I and has an asymptotic Gaussian distribution. In order to illustrate the use of
the algorithm, we discuss two empirical applications: 1) a model of optimal retirement of bus engines,
and 2) a model of optimal retirement of human beings.

I
U

Advanced Statistical Comoutations Improve
Imae ProEessing Applicatlons

Bobby Saffart
Generex Corporation

Modem computer imaging in conjunction with advanced statistical processing are
responsible for significant advances in the areas of medicine and industrial inspection.

Inspections based on the human eye are in many cases tedious, inaccurate, and time
consuming. Image processing techniques and computer graphics offer the capability to
overcome these set-backs. I
The specific area under consideration in this paper is the study of hair density variations
over time. Since hair growth and hair loss occur in a non-predictable and random fashion.
the human eye is practically incapable of measuring and recording these changes. Statistical
processing and computer imaging have been used to facilitate hair density measurement.
However, the current techniques have certain shortcomings and flaws.

The purpose of this work is to eliminate the current obstacles and introduce new techniques.
These techniques include use of artificial intelligence and local statistical processing such as
histogram analysis and Baysian classification criteria. Also methods to eliminate 3-D
distortion and enviromental variations are introduced.
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Real-Time Classification and Discrimination
Among Components of a Mixture Distribution

I Douglas A. Samuelson
International Telesystems Corp.

We consider a system in which we collect and analyze, in real time, observations
of a statistic with a multimodal (or mixture) distribution. Such distributions arise, for
example, in collecting service times when serving multiple classes of customers, each
class having a different service-time distribution, at a single service facility. We present
new, computationally intensive methods, free of distributional assumptions, to classify
current and future observations into one of the underlying classes, and to provide real-
time updating of the classification scheme.

I'
I

Random Graphs

Edward R. Scheinerman3 The Johns Hopkins University

An exciting branch of both graph theory and probability is the study of random graphs. In the
most popular model of random graphs, the vertices of the graph are fixed and edges are inserted
between pairs of vertices at random. Each possible edge is inserted with probability p (or absent with
probability 1- p) and each pair of vertices is considered independently. Because random graphs are
easy to generate on a computer, one can perform "experiments" to create and test conjectures about
random graphs. We discuss some of our successes and failures in this 'experimental" process. Our
discussion will include Hamiltonian closure in random graphs and properties of random interval graphs.

I
I
I
I I
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LINEAR COMBINATIONS OF ESTIMATORS OF THE VARIANCE'OF THE SAMPLE MEAN

Bruce Schmeiser

Wheyming Tina Song

School of Industrial Enginering

Purdue University

West Lafayette, IN 47907

(317) 494-5422

(schmeise@gb.ecn.purdue.edu) I
We investigate linear combinations of well-known estimators of the variance of the sample mean of

strictly stationary time series, including nonoverlapping batch means, overlapping batch means,

standardized time series, and spectral-regression estimators. Bias, variance, and mean squared error are

examined for various processes, estimator types, and estimator paramters using analytic, numerical, I
and Monte Carlo methods.

I

I
I
I
I

130 I



I

An application of quasi-Newton methods in
parametric empirical Bayes calculations

David Scott
Department of Decision Sciences and MIS

Concordia University
Monaeal, Quebec H3G IM8

There has been a surge of interest in parametric empirical Bayes methods since Dempster, Laird,
and Rubin (1977) showed the applicability of the iterative EM process to hyperparameter
estimation. This process is normally computationally intensive, as at each iteration a posterior
expectation must be calculated. To reduce computation when the hyperparameter to be estimated is
a variance, many researchers (e.g., Wong and Mason, 1985) have used a Gaussian approximation
to the posterior distribution at each EM iteration. The estimated posterior mean is then the mode of
the posterior, which can be calculated using a Newton-type method for function maximization. In
addition, the Gaussian approximation permits the Hessian inverse at the optimum for each iteration
to be used to calculate a new estimiate of the hyperparameter.

This research investigates the use of a quasi-Newton technique, employing a BFGS update, in the
calculation of the posterior mode at each iteration of an EM procedure in an empirical Bayes
problem with an unknown prior variance. We maintain only the Cholesky factor of the Hessian,
and update this factor using a Householder technique due to Gill, Golub, Murray, and Saunders
(1974). Thus we never need to decompose the Hessian, reducing from o(n3) to o(n2) the
number of arithmetic operations required at each Newton iteration (where n is the number of
parameters to be estimated). In addition, the Hessian inverse is readily available through a forward-
and back-solution. For empirical Bayes problems involving many parameters, the computational
savings can be substantial.

We present computational results from empirical Bayes parameter estimation in a paired-comparison
setting.

References

Dempster, A. P., N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data viaIIthe EM algorithm Journal of the Royal Statistical Society, series B, 1977, 12, 1-38.

Gill, P. E., G. H. Golub. W. Murray, and M. A. Saunders. Methods for modifying matrix
factorizarions. Mathematics of Computation, 1974, 2, 505-535.

Wong, G. Y. and W. M. Mason. The hierarchical logistic regression model for multilevel analysis.
Journal of the Americal Statistical Association, 1985, N0, 513-524.
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Efficient Algorithms for Smoothing Spline Estimation of
Functions With or Without Discontinuities

by

Jyh-Jen Horng Shiau
Department of Statistics

University of Missouri - Columbia
Columbia, MO 65211 3

Abstract

In this paper, we present some efficient algorithms for
smoothing splne estimation of an unknown function which is
smooth except for some known break points, where discontinuities
occur on either the function or its lower order derivatives. For 3
a problem with n observations, these algorit ms require O(n)
operations for equally spaced knots case and O(n ) operations for
unequally spaced knots case. Similar efficient algorithms are
also derived for the ordinary smoothing splines. i

1321
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Multiply Twisted N-Cubes For Parallel Computing

T.-H. Shiau, Paul Blackwell and Kemal Efe

Department of Computer Science
University of Missouri, Columbia, MO 65211

Abstract: It is known that by twisting one pair of edges of

the N dimensional cube, the resulting graph denoted by TQ(N)

has diameter N-i instead of N. In this work, we show that by

twisting multiple pairs of edges as well as pairs of buses

I (a bus is defined as a set of edges with certain common

properties), the diameter becomes r2N/31. The resulting

multiply twisted N-cube, denoted by MTQ(N), preserves most

* of the desirable topological properties of the ordinary

N-cube for parallel computing. A simple routing method is

presented which can easily be implemented. Finally we

discuss generalizations of MTQ(N) for which the diameters

can be made even smaller in the expense of more complicated

routing. The smallest diameter which can be achieved by this

approach is [(N+1)/21.I
I

This research Js supported in part by AFOSR under Contract
AFOSR-86-0124
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Approximations of the Wilcoxon Test in Small Samples with Lots of Ties

Arthur R. Silverberg l

Food & Drug Administration, Rockville, MD 3

The Wilcoxon-Mann-Whitney Test for two independent samples is frequently
used with data having ties. Although, there are computer programs
to calculate the exact test, even for small samples computer packages
use approximations based upon the normal distribution. Comparisons
of the exact and appropriate distributions are found in the literature
for a few specific cases. For each of the small sample sizes considered,
all distributions of obtaining ties were considered, as well as all
permutations of the ordering of the ties. The exact distribution,
tabulated value without ties, normal approximations with and without
continuity corrections, and Edgeworth expansions with and without continuity I
corrections, were compared.

-i
Application of Orthogqonalization Procedures to

Fitting Tres-Structured Models

Cynthia 0. Siu
Johns Hopkins University I

ABSTRACT

Orthogonalization is an important tool in computations for I
linear model. In this paper, applications of Givens rotations and
Modified Gram-Schmidt orthogonalization to tree-structured
regression are discussed. The resulting procedure generalizes
CART's piecewise-ccnstant tree model to piecewise linear model.
Great versatiliti is offered by this aoproach: regression tree
models for quantitative and binary data can be handled by one
general fitting cr-cedure. In addition, it provides a basis for
implementing -1-ious linear and tree-structured regression
methods under cne framework. 1

I
I
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An Alternate Methodology for Subject Database Planning

Craig W. Slinkman
Henry D. Crockett

Mark Eakin

University of Texas at Arlington

I An important aspect of data administration is strategic data planning. Strategic data planning

is the scheme which an enterprise uses to ensure that its information systems function can support the

managerial objectives of the enterprise. An important component of strategic data planning is the
determination of the subject databases needed. James Martin has suggested a simple ad hoc procedure
for performing this analysis. An alternative procedure is suggested using SAS to perform a
multivariate statistical technique called correspondence analysis. This technique has the advantages
that it has a strong theoretical justification, yields a numerical measure of the strength of the
subjective database clustering, and is relatively simple to include in CASE software.

Some Numerical and Graphical Strategies for Implementing Bayesian Methods

Adrian Smith
A. M. Skene

J. E. H. Shaw
J. C. Naylor

S. E. Hills

Summarizing the information in an irregular or multiparameter likelihood in terms of local
maxima and curvature may be extremely misleading. However, the routine implementation of
integrated likelihood methods requires the development of novel, efficient numerical integration and
interpolation strategies, exploiting modern interactive computing and graphics facilities. Progress with
the development of such techniques will be reviewed and illustrated.

Variable Selection in Multivariate lMultiresponse PermutationProcedures

Eric P. Smith
Department of Statistics

Virginia Polytechnic Institute and State University

Blacksburg, VA 24060

Multiresponse permutation procedures (MRPP) of techniques
for analysing data based on the distance betweeen objects.
These methods are useful in applications where the number of
variables of interest may be large relative to the number of
replicates and data may be highly nonnormal. For example, in
studies on the bacteria in the mouth there may be as many as

100 possible species, many ot them rare.

Besides an overall test of differences between groups, a
researcher is usually interested in questions about which
variables are important and which groups differ. In this talk
some approaches to the problem of variable selection and
variable importance are discussed. A stepwise procedure for
variable selection is described. Simulation is used to assess

and compare the techniques.
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Gamma P-icesses, Paired Comparisons, and Ranking

Hal Stef a

Harvard University 3
Models based on gamma random variables for analyzing ranked data are considered. These are natural

models for ranking problems in which k objects are ranked according to the waiting time for r events to

occur. A sports competition in which the participants are ranked based on the time until a certain

number of points are scored is an example of such a problem. For these problems, the probability that

k objects are ranked according to a particular permutation can be modeled as the probability that k

independent gamma random vavriables with shape parameter r are ranked in that order. Integer

values of r describe many common situations. Other values of r are introduced by considering an

independent increments Gamma process indexed by r. The value of this process at r can be interpreted

as the waiting time until the r' event even when r is not an integer. For each r, a parametric model

is developed by considering permutations of the values of k independent Gamma processes with

different scale parameters.

The paired comparison problem is a special ranking problem in which only two objects can be

compared at a time. The Bradley-Terry and Thurstone-Mosteller paired comparison models are special

cases of the Gamma process model, corresponding to r equal one and r tending to infinity. In addition,

values of r near zero result in another widely used model. The gamma model provides a unified

derivation of these three models and a continuum of new models in between. The gamma models that

result from particular choices of r are fit to several paired comparison and ranking data sets.

II
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U BAYESIAN ANALYSIS USING MONTE CARLO INTEGRATION --

AN EFFECTIVE METHODOLOGY FOR HANDLING SOME DIFFICULT

PROBLEMS IN STATISTICAL ANALYSIS

Leland Stewart

Lockheed Palo Alto Research Laboratory

I Both a mathemaLical and a graphical description of Bayesian
analysis using Monte Carlo integration will be presented. The capabilities
of this approach will be illustrated by two examples.

I In the first example this methodology easily handles rich
multiparameter families of univariate distributions; censored, interval
and binary data; non-conjugate priors; extrapolation uncertainty; and
the computation of posterior distributions for cdf's, hazard rates and
densities.

In the second example, this approach allows the statistician
to compute the posterior probability for each model in a set of possible
models and therefore to retain consideration of several or many models
throughout the analysis rather than to restrict attention to just one
'best model.

Similarities and differences between this methodology and the
Bootstrap will be pointed out.i

I
3 SIMDAT AND SIMEST: DIFFERENCES AND CONVERGENCES

James R. Thompson
Rice University and M.D. Anderson Hospital & Tumor Institute

SIMDAT is an algorithm developed at Rice and the Ballistics Research Laboratory for the
empirical simulation of pseudo-data from a data set of high dimensionality. SIMEST is an algorithm
developed at Rice and M.D. Anderson Tumor Institute for estimating the parameters of a stochastic
proces without the generally prohibitive difficulty (in nontrivial cases) of obtaining a closed form for
the likelihood. Considerations are given for the use of SIMDAT as a part of the SIMEST algorithm.
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SIMULATED POWER COMPARISONS OF MRPP RANK TESTS AND SOME I
STANDARD SCORE TESTS

Derrick S. Tracy and Khushnood A. Khan I
Capartment of Mathematics and Statistics

University of Windsor, Windsor, Ontario, Canada

ABSTRACT

To test the hypothesis of random classification versus classifica-

tion according to some a priori scheme, Mielke, Berry and Johnson (1976)

introduced a test based on multiresponse permutation procedure (MRPP).

This test does not require assumptions of normality and homogeneity, and

works well for data at ordinal or higher levels. The test statistic is

6- 2ciC i for g subgroups, c. is a suitable weight and is the average
11 3. th

distance for all distinct pairs in the i subgroup. The distance mea-

sure is usually AIj = tR(XI)-R(Xj ) l ', where R(XI) is the rank of X, in

the combined sample. Corresponding to v - 1, 2, the test statistics

61 ' 6 2 and their simulated power performance have been studied for se- I
veral underlying populations, e.g., in Tracy and Khan (1987). In this

paper, we compare their powers with those of some standard nonparametric 3
tests, for example, normal score and signed score tests. Using exten-

sive simulation, conclusions are drawn for various combinations of sam- 5
ple sizes from several underlying populations.

Mielke, P.W., Berry, K.J. and Johnson, E.S. (1976). Multiresponse per- I
mutation procedures for a priori classifications. Comm. Stat. -
Theor. Meth. A, 5, 1409-1424.

Tracy, D.S. and Khan, K.A. (1987). MRPP tests in L -norm. Comptl. Stat. I
& Data Anal., 5, 373-380.
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Belief Function Computations for Paired Comparisons

OtoDavid Tritchler

Ontario Canmcer Institute and University of Toronto
Gina Lockwood

Ontario Cancer Institute

The theory of belief functions has been used to extend the method of paired comparisons to
take into account the varying certainty about the paired choices. These certainties are modelled as
belief functions and are incorporated into the analysis of preference structure; the preference model
itself is also modelled as a belief function. The conflict between various belief functions is used an a
basis for diagnostics describing the choice task.

The computational complexity of the method is high. TI& paper considers the computational
problem. Some shortcuts are obtained using results from the theory of belief functions and graph
theory. Monte Carlo methods and the use of symbolic programming are lso discussed.

An expert system for prescribing statistical tests of
non-parametric and simple parametric deigns

Gary W. Tubb
Instructional Computing

University of South Florida
Tampa, FL 33620

An inordinate amount of faculty time is often consumed advising behaviorial science students
in the use of appropriate statistical tests. The experimental designs are often straighforward and result
in analyses of non-parametric or simple parametric data. This paper describes an expert system
written in Turbo PROLOG that prescribes appropriate statistical tests for such simple designs.

The expert system queries the student for example data values of a single subject and the
variable name for each data value. Then the system queries for the probable range of the data values.
Options for missing data and the transformation of data are provided. The student then identifies the
variables to be compared, correlated, tabulated, etc. Based. upon this information, the expert system
proposes statistical techniques for systematically analyzing the data. The student may query the
expert system regarding the logic of employing a specific statistical technique.

3 Performance of Several One Sample Procedures
David L. Turner
and YuYu Wang

Empirical p-values and powers for the usual t test, the signed rank test, a trimmed t test, a
jackknife and a bootstrap procedure were compared using repeated samples of size 30 from normal,
double exponential, cauchy, negative exponential and uniform distributions for normal power values
ranging from 0.05 through 0.95. The Bootstrap performed as well as the usual t test. The trimmed t,
signed rank test and the usual t-test performed about the same. The jackknife performed worst among
these tests. The signed rank test did best for the cauchy distribution.
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Modeling Parallelism An Interdisciplinary Approach U
Dr. Elimbeth A. Unger. Professor

Kansas State University I
Department of Computing and Information Sciences

One can easily conjecture that we humans have imposed sequential solutions onto most
problems. such are a better match to our physical architecture, but we propose that there
are parallel solutions to many problems and these are a better if they can be matched to
our computer architectures. The discovery of problems involving parallelism in many and
diverse disciplines which are the subject of current research efforts has been a simple
matter. however the development of methods which discover the parallelism possible in
solutions to a problem is not a simple matter and is the focus of this research. This paper
will describe the model and discuss the current research efforts in terms of academic con-
tributions and the strengths gained through the interdisciplinary group approach to prob-
lem solving.

At Kansas State University a group of people from three disciplines in two colleges has
been formed to provide a critical mass of researchers and to create broader base of i
knowledge from which to draw to find an architecture-free model which can be used to
express. in a natural way. the potential concurrency in problem solutions. A partially
defined model based upon a conditioned datafiow which incorporates the concepts of con-
trol flow based on datadlow. of the description of an action at any level of detail with sub- U
sequent further refinement if desired. of repetition based upon partitions of data aggre-
gates. of single assignment of values to uniquely identify each incarnation of data objects,
and of partial computation. i.e.. computation which can proceed until a needed unavailable I
datum is encounter has been developed. The group has four major foci to their work. 1)
continuing development of the theoretical foundation of the model, led by the computer
scientists. 2) use of the model to discover paradigm parallelism models for particular I
problems at the small and the large granularity levels of detail, led by the statistician and
engineers. 3) the development of methods of determining the best fit of the disovered
parallelism to existing architectures, led by the statistician and engineers. 4) the continued
implementation of a prototype on a -tistributed network of procesors. led by the comput-
er scientists. All members have contributed to all phases.

The current status of our work includes a model which has been shown to contain a core 3
of statements which always describe determinate problem solutions for atomic data types.
A prototype of the model is operating, albeit a bit inefficiently at the present time, on a
network of loosely coupled processors. The prototype is being used to study problem
solutions where the granularity of the parallelism is small. On going research work in- i
volves providing the theoretical basis for temporally partitioned data aggregates. the inclu-
sion in the prototype of partial computation. and limited data structures and the develop-
ment of models of existing architectures using the model for the current multiprocessor N
architectures.

I
I
I
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Some Statistical Problems in Meteorology

SGrace Wahba
Depatment of Statistics
University of Wisconsin

I will discuss some statistical problems that arise in merging data
from various sources to provide estimates of the current state of the
atmosphere, for the purpose of providing initial conditions for
numerical weather prediction. Some interesting theoretical statistical
questions arise. Of course the practical and theoretical questions only
sometimes come together - meteorological data can be very messy and have
error structure that can be hard to model. Other challenges concern the
blending of physical and prior statistical information, the numerical
problems inherent in the simultaneous analysis of extremely large data

sets, the detection of unreliable forecast,(etc.).

Encoding and Processing of Chinese Language
-- A Statistical Structural Approach

Chaiho C. Wang
U.S. Department of Justice and The George Washington University

Washington D. C. 20001

ABSTRACT

Efficient encoding of an ideographic based language, such
as Chinese, depends on two key factors: statistical
structure of the language and pattern recognition
technology. Statistical analysis and computer technology
must evolve hand-in-hand. This paper proposes procedures
that incorporate user friendly input schemes with low
redundancy internal coding methods for computer storage.
Attempts are made to integrate the traditionally divided
phonic and grapnical methods. Special attention is paid
to minimizing human effort in the total word processing
process.

I
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ON COVARIANCES OF MARGINALLY ADJUSTED DATA

April, 1988 1
James S. Weber, Asst. Prof., Dept. of Mgmt, Roosevelt University, Chica
IL* (*- Preferred mailing address: PO Box 603, Gurnee, IL 60031-0603.

1980 AMS Subje;.t Classification: Primary 62-07, 62-04
Secondary 62A10, 62D05, 62H17, 62N99, 62P20, 62P25

Key Words and Phrases: iterated proportional fitting algorithm, (IPFA),
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ABSTRACT I
The adjustment of contingency tables to have prescribed row and
column sums occurs frequently in applications. (Eg. adjustment of
a cross classified sample; trip distribution & migration modeling;
certain budget allocation techniques; etc.)

If there is uncertainty and a covariance structure associated
with the marginal sums and with the interaction matrix, then it
may be desirable to know how this variability propagates to the
scaled interaction matrix.

We describe this propagation with approximate covariances
obtained from derivatives of the scaled matrix in a linear I
function of the covariances of the independent variables.

A number of complications make this effort interesting. 1. The I
scaled interaction matrix is implicitly defined fui-tion of the
initial interaction matrix or the row and column sums. The
derivatives require either an inverse of a singular matrix or an
iterative procedure. Here we chose an iterative procedure (and
describe the convergence carefully.) 2. There is a functional
dependence among the row and column constraints. Obviously this
is related to the singular matrix mentioned in #1, but in
applications thic dependence must be specified behaviorally
rather than mathematically.

The contributions of the proposed paper are: 1. We explain an I
iterative procedure for computing the derivatives of the Iterated
Proportional Fittiiz Algorithm ("IPFA") for interaction matrices
with specified ma=-z~al sums which properly reflects the
functional dependence between row sums and column sums; 2. We
clarify that there :- a dependence of the covariances of the
marginally adjusted Cata upon the way in which the dependence of I
the row and column sums is specified so that the sum of the row
sums equals the sum of the column sums; 3. We discuss several ways
of insuring row and column sum consistency; 4. We provide
approximate expressions in a factored form showing in detail the
sensitivities to the variability of each of the independentvariables. (Simulations do not give this level detail.)
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Baesian Diagnostics for Almost Any Model
I Robert E. Weiss

University of Minnesota

When calculating a Bayesian posterior mean using a numerical method such
as Monte Carlo or Quadrature, it is very easy to also compute influence and
outlier case statistics for each data point at small extra cost. Most of the
Bayesian diagnostics currently in the literature are functions of the predictive
distribution of the next data point. This leads to the predictive plot, a graph
of the predictive distribution of the next observation as a covariate changes.

I Predictive plots can be used for model checking in addition to the obvious use
as a prognostication.

I'

I Variants of Tierney-Kadane
G. W eiss & H. A. Howlader

U Abstract

Bayes estimation of the reliability function of the logistic

distribution under a log-odds squared error loss with a non-

nformative prior is considered by using the aoroximation method

of Tierney & Kadane (1986). Direct aoolicatlon of the procedure

does rot weld correct results and so some variations of the

orocedure are considered.

II
I
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Sion: Inference and Expert Systems

COSTAR : An Environment for
Computer-Guided Data Analysis

by
David A. Whitney

Ilya Schiller

The Analytic Sciences Corporation3
55 Walkers Brook Drive

Reading, MA 01867 (617) 942-2000

This paper describes work in progress on the development and implementation
of COSTAR, a tool for CQordinated Slatistical Analysis and Reasoning.COSTAR
illustrates the integration of high-end symbolic / numerical hardware and software
environments. One objective of this work is to use modern "off-the shelf' statistical and

expert-systems programming tools that allow the developer to focus more on the content of
the system, and less on implementation details. Symbolic processing is implemented in
KEE and Common Lisp on a Symbolics workstation, with numerical processing performed
on a mini-supercomputer, the Alliant FX/8 running IMSL and Fortran. The knowledge 3
base uses frames to represent a hierarchy of data objects and directs the development and
application of rules through the use of rule classes. The system implements such a rule-
based inferencing system for ARMA time series modeling. I

COSTAR is designed to be a tool both for solving statistical problems, and for

studying strategies for solving data analysis problems. In this regard, it owes an intellectual
heritage to both REX and DINDE. The system development perspective here is primarily
that of a statistician, not of an Al scientist. The system is designed for a fairly sophisticated
user who can be expected to contribute to parts of the analysis -- an interactive, graphical, 3
two-way user interface is an important part of the system. The system leverages the user's
ability and increase efficiency by executing routine analysis, presenting the user with
options when decisions are not clear-cut, and asking for user-input if new situations are I
encountered. The system provides for trace or logging facilities to keep track of analysis
sessions. These traces are used to help refine data-dependent statistical strategies, and to

support the refinement, formalization, and "learning" of rules in the knowledge base. Such

traces also play an important role in the validation of the inferencing schemes in the system.

It is designed as a system which will start with basic expertise in a data analysis method,

but that is also able to acquire specific applications expertise as analysis sessions are

recorded and reviewed.
This paper describes the a- itecture of the prototype COSTAR system and the 3

ARIMA modeling knowledge base ,mplemented. System validation procedures are

discussed, along with the trace facility for analysis cataloging and rule refinement. Plans
for study of more sophisticated, more automatic rule refinement schemes are also
discussed.
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Bayes Estimation of Cerebral Metabolic Rate
of Glucose in Stroke Patients

P David Wilson, SC Huang, RA Hawkins

Local cerebral metabolic rate of glucose (LCMRG) in a local region
human brain can be calculated as a nonlinear' function of the ran
c~nstants in a 3-compartment model. The model describes the fate of
deoxyglucose (DG) in the region following injection into a peripheral
vein. The compartments are: (1) DG in plasma, (2) free DG in brain
tissue, and (3) phosphorylated DG in brain tissue. If the injectected
DG is labeled with Fluorine-18, a positron emitter, a positron emission
tomography (PET) scanner can record the relative concentration of the
F-18 label in the region. To a close approximation the contribution of
compartment (1) to the PET data can be ignored, and the PET data can be
said to represent a noisy version of the combined contributions from
compartments (2) and (3). From a linear systems viewpoint, the F-18
concentration versus time function in the combined compartments (2) and
(3) can be viewed as the output function of a system in which the
impulse response is a biexponential time function witn coefficients
(called macroparameters) which are nonlinear functions of the rate
constants. The input to the system is the concentration versus time
function of F-18 in compartment (1), and this can be observed in a
peripheral vessel. The output function is the convolution of the
impulse response and the input function. If the input and output
functions are observed repeatedly over a 2.5 to 3 hour period after
injection, nonlinear regression methods can be used to estimate the
macroparameter coefficients of the biexponontial impulse response, and
from these the LCMRG can be estimated. However, the long scanning
period required is seen as unacceptable for routine clinical studies
because the patient is required to lie in the scanner without moving
his head for the entire period and because of demand for scanner time.
Thus a procedure is desired which will estimate LCMRG from a PET
observation at a single time and the input function observed up to that
time. Several such "single scan" methods are currently in clinical
use. These methods use the values of estimates of the population mean
rate constants (but are not Bayes procedures). The rate constants are
different in normal and stroke regions of the brain, and preliminary
perfusion scans and transmission computed tomography scans would be
required to delineate the stroke region of the brain. But LCMRG
estimation procedures are desired to be independent of such preliminary
scans, and the existing single scan methods make large systematic
errors in stroke tissue when using mean rate constant values for normal
tissue. We developed a Bayes procedure for use with a single scan.
Empirical prior mean vectors and covariance matrices are available for
the macroparameters for both normal and stroke tissure separately.
Empirical prior results are also available for the error variance of
the PET observations. For each tissue type, we assumed that the macro-
parameters are Gaussian distributed among individuals in the population
and that the reciprocal error variances are gamma distributed. The
Bayes procedure computes the posterior distribution of the macro-
parameters twice, once using the prior density for each tissue type,
and selects the macroparameter estimates associated with the highest
posterior density. We conducted computer simulation studies to display
the behavior of the Bayes procedure for stroke tissue and to compare it
with the other single scan methods. Mean and root-mean-square percent
errors are given for a range of true LCMRG values in stroke tissue.
The Bayes procedure is seen to be superior to the other methods.
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NETWORKS TO SUPPORT SCIENCE 1
Stephen Wolff

National Science Foundation
1800 G Street, N. W.

Washington, D. C. 20550
(Electronic Mail: stevetcerberus.DNCRI.NSF.GOV

ABSTRACT

More than 150 academic, industrial, and government research campuses are now 3
attached to NSF-sponsored, mid-level computer networks and interconnected by
the transcontinental NSFNET Backbone Network. The connection of multiple
supercomputers to the Backbone has extended high performance computing to the 3
largest constituency ever; in particular, more statisticians than ever before
can be Practicing - as well as Thinking - the Unthinkable.

Of equal, and in the long run even greater, importance is that the transparent I
connection of the NSFNET family of networks and the ARPANET (achieved by Joint
adoption of an open protocol set) has achieved a critical level of scientist-
to-scientist connectivity. Just as highways and railroads enabled the ready
assemblage and interaction of raw material, capital, and labor to fuel the
Industrial Revolution, so the emerging National Research Internet is enabling
intellectual concentrations of unprecedented scale and agility, and a new I
epoch of the Information Revolution based on Collaboration Technology isunderway. I

All-Subsets Rearession on a Hyoercube Multiorocessor !
Peter C. Wollan

Department of Mathematics
Michigan Technological University I

Houghton, MI 49931

All-subsets regression (that is, computing linear regressions for all
subsets of k predictors) is an inherently parallel problem, suitable for
exploring the use of hypercube multiprocessors in statistical computation.
The a!gorithm described here uses the sweep operator for introducing or 3
removing variables; the load is apportioned among processors in a nearly
optimal way, based on the Gray code embedding of a hypercube into a
torus. The algorithm is implemented in FORTRAN on an Intel iPSC d4. The 1
program's general behavior suggests that while hypercube multiprocessors
are potentially valuable for data analysis, their use will require 3
development of new methods.
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An Iterative Bayes Method for Classifving
Multivariate Observations

Duane E. Wolting

Aerojet TechSystems 
Comany

A method is presented for classifying multivariate observations.
The method uses a Bayes decision rule, which is initially

determined from a sample of training observations. Subsequent
observations classified with this decision rule are used to

adjust the rule in a nonsupervised fashion. These same
observations are then reclassified using the adjusted decision3 rule. The process is repeated until convergence is attained.

The behavior of this algorithm is examined in a series of
computer simulation studies. The effects of interclass

separation, training sample size, number of classes and

dimensionality are considered. The results suggest that under
certain conditions this method reduces the misclassification rate

3 by as much as 30%. Although computationally intensive, the
algorithm appears to converge in relatively few iterations.

3 Applications to pattern recognition are discussed.

KEYWORDS: Bayesian estimation, classification, computationally
intensive methods, decision-theoretic recognition, iterative

procedures, nonsupervised learning, pattern recognition.
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On the Convergence of Variable Bandwidth i
Kernel Estomators of a Density Function

Ting YangI
University of Cincinnati

We consider here the Rosenblatt-Parzen kernel estimators of an unknown
density function, but this time with a variable (local) bandwidth. The consistency
in studied for variable bandwidth kernel estimators. We also have simulated and
shown that in terms of integrated mean squared error (for any sample size), the
kernel etim.tors with local bandwidth cnoice are better than the ordinary kernel i
estimators with global bandwidth if optimal bandwidths are used.

I
I '

I

A COMPARISON OF SEVERAL METHODS FOR GENERATING EXPONENTIAL POWER VARIATES I

Dean M. Young i
Baylor University

Danny W. Turner 3
Baylor University

John W. Seaman 3
University of Southwestern Louisiana

I
ABSTRACT

This paper compares several alternative algorithms for generating 3
observations from an exponential power distribution with parameter r,
I < r < 2. The algorithms include squeeze methods, a ratio-of-uniforms
method, and an almost-exact inversion method. A comparison of marginal
execution times is made among the variaous methods mentioned above and
the generalized acceptance/rejection method proposed by Tadikamalla
(1982). .
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IMesser Karen
Mergerson James W. Department of Mathematics
USDA, NASS, RAD, SSB California State University
3251 Old Lee Highway, Rm. 506 Fullerton CA
Fairfax VA 22030 (714) 774-3631

I
Meyer Michael Meyer Ruth K.
Statistics Department Department of Business Computer Inf. Sys
Carnegie-Mellon University St. Cloud State University
Pittsburgh PA 15213 St. Cloud ! 56301
M111Sfandres.cmv.edu (612) 255-2241

1(412) 268-3108



Mikhail Nabih lillar P.W.
Department of Mathematics Department of Statistics
Liberty University University of California, Berkeley
Box 20000 Berkeley CA 94720
Lynchbrg VA 24506-8001 (415) 642-2781
(804) 237-5961 1
Miller John Miller Michael F. I
Center for Computaticnal Statistics Hoechst-Roussel Pharmaceuticals Inc.
George Mason University Route 202-206N, Bldg H
4400 University Drive Somerville 143 08876 IFairfax VA 22030 (201) 231-3486
(703) 323-2733

Mitchell 7bby

Minor James M. Math Stat Research, Eng Physics Division
Du Pont Ccmpany Oak Ridge National Laboratory
P.O. Box 6090 P.O. Box Y, Bldg. 9207k, MS3 U
Newark DE 19714-6090 Oak Ridge 1W 37831
(302) 366-2432 mitchellfmer.epm.ornr.gov

(615) 574-3143 5
ittnik Stefan Hiyashita Dr. Junryo

Department of Economics Department of Computer Science I
State University of NY at Stony Brook California State University
Stony Brook NY 11194-4384 5500 University Parkway
~fl~SbT CC I (Bitnet) San Bernardino CA 92373
(516) 632-7532 (714) 887-7647

Hdarres Reza Mode Dr. Charles J. 3
Mathematics, Statistics and CS Dept. Department of Math. and Coputer Sci.
The American University Drexel University
Massachusetts Avenue Philadelphia PA 19104
Washingtn DC 20016 215-895-2668 m
(202) 885-3149

M ohns Cynthia Mokatrin Ahmad
Numerical Algorithm Group Inc. Math/Stat Department, Clark Hall
1101 31st Street, Suite 100 American University
Downers Grove IL 60515 4400 Massachusetts Avenue U
(312) 971-2337 Washington DC 20010 I

Itiser Barry
Moore Marc Department of Exper. Statistics
Ecole Polytechnique kntreal Louisiana State University
C.P. 6079 Succursale "A" Ag. Administration Building
Montreal Quebec H3C 3A7 Baton Rouge IA 70803-5606
CANQ XST769ILSV.bitnet
(514) 340-4513 (504) 388-8303

Mossa-Hamouda Ef tat Muller Mervin E. 3
DePaul University Department of Ccmpter & Inf. Science
2323 N. Seminary, #572-C The Ohio State University
Chicago IL 60614 2036 Neil Avenue Mall
(312) 341-8250 Columbus CH 43210-12 7

(614) 292-5973 1



Munscu Peter J. Iadas Arthur
National Institutes of Health IBM Research
Building 10, Room 6C101 P.O. Box 218
Bethesda MD 20892 Yorktown Height NY 10598
FnNMI= NADASKVMX
(301) 496-2972 (914) 945-2163

Nelder J.A. Newton H. Joseph
Imperial College Department of Statistics
Huxley Bldg., 180 Queens Gate Texas A&M University
Landon SW7 2BZ College Station 7X 77843-3143
EGLAND (409) 845-3141
UK+1-589-5111

NFy Trur H. Nicoll Jeff
EIC Labs MA
111 Downey Street 1801 N. Beauregarde Street
Norwood MA 02062 Alexandria VA 22311
(617) 769-9450 (703) 478-2987

I ~Nolan James R. Normolle Daniel
Qantitative Business Analysis Department of Biostatistics
Siena College University of Michigan
Loidonville NY 12211 School of Public Health
(518) 783-2503 Ann Arbor MI 48109-2029
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Department of Statistics O'Brien Fanny
No~rth Carolina State University BBN Software Products
Box 8203 10 Fawcett Street
Raleigh HC 27695-8203 Cambridge MA 02238
NYOHVC-STAT. BINEW (617) 497-37783 (919) 737-2534

O'Connor Carol
Speed Scientific School O'Connor Thomas A.
University of Louisville O'Connor and Associates, Inc.
Louisville KY 40292 3017 Juniper Hill Road
(502) 588-6304 Louisville KY 40206

Oldford R. Wayne
Department of Statistics & Act. Sci Ondrasik John A.
University of Waterloo P.O. Box 368
Waterloo Ontario N2L 361 Boehringer Ingelheim Pharmaceuticals
CANAA 90 East Ridge
CS T:RWOLDfUU)OATER.WATEO.EDU Ridgefield Cr 06877
(519) 888-4609 (203) 798-4243

I Ostrouchov George Owen Art
Mathematical Sciences Section Department of Statistics
Oak Ridge National Laboratory Stanford Unversity
Building 9207A MS-3 Sequoia Hall
Oak Ridge IN 37831 Stanford CA 94305
OSIKSR. f.O0L.(V artoplayfair.stanford.edu

(615) 574-3137 (415) 725-2232



Ozga Martin
Room 4168 Pacheco Nelson S.
USDA, N AS, RAD, SRB 1259 Lake Plaza Drive
14th & Independence Ave., SW Colorado Spring 00 80906
Washington DC 20250 (719) 550-6376
(202) 447-5483

Padgett William 3. J
Department of Statistics Park Tae-woo
University of South Carolina AFAL/SCS
Columbia SC 29208 Edwards AFB CA 93523-5000
(803) 777-5070 (805) 275-5196

Parzen Emanuel Patterson David
Department of Statistics Department of Math Sciences
Texas A&M University University of Montana
College Station TX 77843-3143 Missoula MT 59812 I
(409) 845-3188 (406) 243-6748

Pederson Shane
Peck Roger W. P.O. Box 1663
Department of Ccmputer Science and Stat. Los Alamis National Laboratory
The University of Rhode Island Mail Stop F-600
Tyler Hall Los Alamos li 87544
Kingston RI 02881-0816 100176A26@SIVAX.IA L.GOV
(401) 792-4497 (505) 667-7303

Pei Gabriel P. Peierls Ronald F.
Institute for Defense Analyses Applied Mathematics Department - 515
1801 N. Beauregard Street Brookhaven National Laboratory
Alexandria VA 22311 Upton NY 11973
(703) 578-2882 peierlsUtnl.bitnet I(516) 282-4104

Percival Don Perry Charles R. 1
Applied Physics Lab USDA/NASS
University of Washington 14th & Independence Avenue S.W.
Seattle WA 98105 Washington DC 20250
(206) 543-1300 (202) 475-3075

Peruggia Mario College of Agricultural Sciences
Department of Statistics University of Deleware
Carnegie-iellon University Department of Food & Resource Economics U
232 Bi Newark DE 19717-1303
Pittsburgh PA 15213 FOD31626MDACSVM bitnet
(412) 268-8590 (302) 451-1319 I
Phillips Abraham Phinney Stephen E. 3
Research Dept 250/060
Prudential Property & Cas Insurance Co. IBM Manassas
23 Main Street 9500 Godwin Drive
Holmdel NJ 07733 Manassas VA 22110 I
(201) 946-5109 (703) 367-2403

I



Pickle Dr. Linda ,.

CPieper Carl

Landon Building, Room 3A06 295 Central Park Vest, 15D
Bethesda MD 20892 New York NY 10024
(301) 496-6425 (212) 799-8212

Pierce Alan Pierce Margaret Anne

oProduction Company Georgia Southern CollegeI4502 East 41st Street B 8093

Tulsa OK 74136 Statesboro GA 30460

(918) 660-3830 (912) 681-5427

Pierchala Carl E. Pitcher Hugh M.
Food & Drug Administration US - EPA

P.O.Box 5543031 Beech Street, N. W.
West Bethesda MD 20817 Washington DC 20015
(301) 443-4594 (202) 382-2788

Pregibon Daryl
AT&T Bell Labs Puri Madan
600 Mountain Avenue, Room 2C-264 Department of Mathematics
Murray Hill N3 07974 Indiana University
(201) 582-3193 Bloonington IN 47405

Raj Baldev
Pur Madan School of Business and Econmics
Department of Mathematics Wilfrid Laurier University
Indiana University Waterloo Ont N2L 3C5
Bloomington IN 47405 CANADAi (519) 884-1970

Ramirez Donald E. (

Department of Mathematics Ratnaparkhi M.V.
University of Virginia Department of Mathematics and Statisitcs
Math-Astro Building Wright State University
Charlottesville VA 22903 Dayton OH 45435
DERWIRGINIA (513) 873-2193
(804) 924-4934

Raubertas Richard F. Rayens William S.
Department of Statistics Department of Statistics
University of Rochester University of Kentucky
Rochester NY 14627 859 Patterson Office Tower
(716) 275-2406 Lekington KY 40506-0027

(606) 257-7061

Richter Don
Richardson David Graduate School of Business Admin.
10211 Brunswick Ave. New York University
Silver Spring MD 20902 100 Trinity Place
(301) 649-2650 New York NY 10006

(212) 285-6130



Ringeisen Richard D
Department of Mathuatical Sciences Ran Dror I
Clemson University 441 Tomlirson Road F-13
Cleson SC 29634-1907 Philadelphia PA 19116
RDRNIOICisson (215) 661-6336
(803) 656-5245

Rosenlatt Joan R. Rovine Fichael J.
National Bureau of Standards Department of Individual and Family Stud
Administration Bldg, Roan A438 Penn State
Gaithersburg MD 20899 S-11O Henderson Building
975-2733 University Park PA 16802

(814) 863-0267

Rumpf David L. Ruskin David
Department of Ind. Eng. and Inf. Systems Center for Naval Analyses
Northeastern University P.O. Box 16268
360 Huntington Avenue, Rm 330 Snell Alexandria VA 22302
Boston MA 02115 (703) 824-2284
(617) 437-3632

Russell Carl T. Rust John
U.S. Army C7a, CSTE-TS-R University of Wisconsin
5600 Columbia Pike 1180 University Drive
Falls Church VA 22041 Madison WI 53706
(703) 756-1818 (608) 263-3871 1
Ryan Barbara
Statistics Department Ryan Thomas A.
Stanford University Minitab, Inc. i
Sequoia Hall 3081 &P~terprise Drive

Stanford CA 94305-4065 State College PA 16801
BFRUYFAIR. SMN .ED (814) 238-3280(415) 723-2787

Salomon Matthew A. Samuels Stephen M. U
Fiscal Analysis Division Department of Statistics
Congressional Budget Office Purdue University
2id & D Streets, SW W. Lafayette IN 47907
Washington DC 20515 (317) 494-6042
(202) 226-2765

Sawyer John W.
Samuelson Duglas A. Texas Tech University
International Telesystems Corporation 1A104 Health Sciences C, cer
600 Herndon Parkway Lubbock TX 79430
Herndi VA 22070 (86) 743-2146

Scharff H. Felix Schiller Susannah
Dept 49WA, Stu 260 5 Scharlet Sage Court
IBM Burtonsville MD 20866
Neighborhood Road SchillowS
Kingston NY 12401 (301) 776-1187 m
(914) 385-4013

1



Scbmeiser Brhce W.Sde J osef .hool of Industrial Engineering

Union College Purdue University
Bailey Hall 311 Grissom Hall
Sdwnectady NY 12308 West Lafayette IN 47907
scmeejeunio sdueiselpink .ecn.purdue.edu
(518) 370-6248 (317) 494-5422

Scott David
Department of Statistics

Schwemberger John La Trobe University
8154 Larkin Lane Bundoora Victoria 3083
Vienna VA 22180 AUSRALIA
(202) 382-7195 STADTSlatvaa8.lat mnanri.oz+(61) 3 4792091

Scott Dr. David
Scott David W. Dept of Decision Sciences and Management
Department of Statistics Concoordia University
Rice University 1455 de Maisonneuve Blvd. WestI P.O. Box 1892 Mtreal Quebec H3G 1M8
Houston TX 77251-1892 CANADA
(713) 527-8101 (514) 848-2969

Seaman John V. Segall Dr. Richard
Department of Statistics Department of Mathematics
University of Southwestern Louisiana University of towell
P.O. Box 41006 Lowell MA 01854
Lafayette LA 70506-1006 (617) 452-5000
(318) 231-5294

U Sessions Dr. David K. Shanmugam Ron
9 Purdue Road University of Colorado
Glen Cove NY 11542 Denver CO 80204
(516, E?76-2123 (303) 556-8463

I Shiau Jyh-Jen Horng Shiau Tzong-Huei
Department of Statistics Department of Computer Science
University of Missouri-Columbia University of Missouri-Coiwnbia
222 Mathematical Science Bldg Columbia M)O 65211
Columbia HD 65211 csshiau xcvmb.bitnet
(314) 882-7467 (314) 882-4540

Shier Douglas R. Shing Chen-Chi
Department of Mathematics Department of Computer Science
College of William and Mary Radford University
Williamburg VA 23185 Bcx 5752
SDRSH]flEO S Radford VA 24142
(804) 253-4481 (703) 831-5733

Shrager Richard I. Silverberg Arthur
National Institutes of Health Food and Drug Administration
Bldg 12A, Roo 2041 4600 Fishers Lane, HfV-124
Bethesda 6 2892 Rockville D 5(301) 496-1122 (301) "43-1580



Simo Dr. Richard Sirqparwalla N.D. U
R, 4 06 Department of Operations Research
National Cancer Institute George Washington University
7910 Womw t Avenue Washingtonl DC 20052
Bethesda MD 20892 (202) 994-7515
(301) 496-4836

Siu Cynthia 0. Sleeper Lynn A.
Osler 622 Department of Biostatistics
The Jdw Hopkins University Harvard School of Public Health
600 N. Wolfe Street 677 Huntington Avenue
Baltimore MD 21205 Boston MA 02115

(617) 732-3626U I
Slinkma Craig W. Slowinski Sanue1 M.

Department of Inf Sys & Mpt Sciences rederal Reserve Board
The University of Texas at Arlington 20th & Constitution Avenue, NW
Arlington TX 76019 Washington DC 20551
B718MIP ARLH1 (202) 452 2622
(817) 273-3502

Smith Adrian Smith Eric P. 1
Department of Mathematics Department of Statistics
University of Nottingham Virginia Polytechnic Institute & State U
Nottingham NG7 2RD Blacksburg VA 24061 I
UNITED KDICt (703) 961-7932
602 484848

Smith Laurie Melany Snell Robert
9521 Baltimore Avenue Eastman Kodak Company
Laurel MD 20707 U , Bldg 56, Fl 4, KP
(301) 490-9665 Rochester NY 14650 1

Sofer Ariela Somerville Paul N.
CRAS University of Central Florida
George Mason University P.O. Box 25000
4400 University Drive Orlando FL 32816
Fairfax VA 22030 (305) 275-2695
(703) 323-2728

Sood Arun K. i
So Tina Department of Computer Science
Purdue University George Mason University
West Lafayette IN 47906 4400 University Drive
(317) 698-7961 Fairfax VA 22030

(703) 323-3395 I
Soyer Refik Speciman Paul
Department of OR Department of Statistics
George Washington University University of Missouri-Columbia
Washington DC 20052 Columbia MD 65211
(202) 994-6794 (314) 882-7783 !i



I
Stephensc Elizabeth Stern Hal
P.O. Box 7375 Department of Statistics
2375 Garcia Avenue Harvard University
!*xtain View CA 94039 Cne Oxford Street1 (415) 960-7784 Cambridge MA 02138

Stewart G. W. Stewart Leland
University of Maryland Departmnt 92-20, Bldg. 254E
College Park HD 20742 iockheed Research Laboratory
stewartthales.cs.umd.edu 3251 Hanover Street
(301) 454-6120 Palo Alto CA 94304

(415) 424-2710

I Studdiford Walter B. Stuetzle Werner
Registrar's Office Department of Statistics
Princeton University University of Washington
$10 A West College QW-22
Princeton %1 08544 Seattle WA 98195
(609) 452-6195 (206) 543-4386

Sutton Cliff
Center for Ccmputational Statistics
George Mason University Szewczyk William F.
242 Science Technology Building 2905 Shamrock Terrace
Fairfax VA 22030 Olney ND 20832
csuttonvgmuvax (301) 774-11583(703) 323-3863
Takane Yoshio
Department of Psychology Tarter Michael E.
McGill University Department of Statistics
1205 Dr. Penfield Avenue University of California
Montreal Quebec H3A lBI 32 Earl Warren Hall
CANADA Berkeley CA 94720
PS811 'ILAk (415) 642-4601
(514) 398-6125

U Tasker Gary D.
U.S. Geological Survey Tawfik Lorraine
430 National Center 40 Amityville Street
Reston VA 22092 Islip Terrace NY 11752
(703) 648-5892 (516) 277-2875

ITaylor D. Wayne
Department of Clinical Epideniology&Bio. Teitel Robert F.
Mcfaster University Teitel Data System
Health Sciences Center 7200 isconsin Avenue, Suite 410
Hamilton Ontario LON 3Z5 Bethesda MD 20814
CANADA (301) 656-04011525-9140 X4102

Therneau Terry M.
Terpenning Irma May Clinic
Rd2 &ox 109 200 First Street SW
Frenchtown NJ 08825 Rochester W 55905
(201) 582-2268 (507) 284-8803



Thisted Ronald A.
Department of Statistics Tba.son James R. m
University of Chicago Department of Statistics
5734 University Avenue Rice University
Chicago IL 60637 P.O. Box 1892
thistefalton.uchicago.edu Houston TX 77251-1892
(312) 702-8333 (713) 527-4828

Thornton Ding H. Tierney Luke
Naval Air Test Center School of Statistics
Computer Sciences Directorate University of Minnesota
Patuxent River MD 20670-5304 Minneapolis MN 55455
(301) 863-3396 lukeum tatwtm-cs.arpa

(612) 625-7843

Tretter Dr. Marietta Tsng Yi
Business Analysis & Research FDA HFN-715
Texas A.& M. University 6500 Fisher Lawe
College Station TX 77843 Rockvilie MD
(409) 845-1383 (301) 443-4710

Tubb Gary3
Tu TInstructional Computing
3637 Canyon Crest Drive, A307 University of South Florida
Riverside CA 92507 USF 3185
(714) 788-4656 Tampa FL 33620 m

J1PABAVM

Tukey Paul A. Turner David L. I
Bell Communications Research Department of Mathematics & Statistics
435 South Street Utah State University
Morristown NJ 07960 Logan Utah 84322-3900 I
(201) 829-4285 UM MUmSU

(801) 750-2814

Uger Elizabeth Utts Jessica

Computuv and Information Sciences SRI
Kansas State University 333 Ravenswood Avenue
243 Nichols Hall Menlo Park CA 94025
Manhattan KS 66506 utts@w-ix.sri.coa

(415) 859-4445 I

Varner Ruth Varty John Frankli.nI
369 Holmes Drive 6602 Boulevard View Place
Vienna VA 22180 Alexandria VA 22307
(703) 938-9209 (703) 765-0540 m
Venetoulias Achilles
E40-133 Vernhes Frederique L.
MIT, Sloan School Department of Statistics
1 Amberst Street Yale University
Cambridge MR 02139 Box 2179, Yale Station I
axlleaollin.mit.edu New Haven CT 06511
(617) 253-8416 (203) 782-0430 l



I Vitter Jeffrey S.

Vetter Jon E. Department of Computer Science
Washington Navy Yard Brown University
Naval Weapcn Engineering Support Act Box 1910
ESA-31, Bldg. 220-2 Providence RI 02904
Washington DC 20374-2203 jsvcs.brown.edu
(202)433-3621 (401) 863-3300

Von Eye Alexander
Departi for Individual Family Study Waclawiw Myron
The Pennsylvania State University 5364 Hesperus Drive
University Park PA 16802 Columbia MD 20144
(814) 863-0267 (301) 730-0294

Wahba Grace
Department of Statistics Walker Homer
Yale University Department of Mathematics
Box E179 Yale Station Utah State University
New Haven CT 06520-2179 Logan UT 84322-3900
wabatlray.cs.yale.edu uf7099@usu.bitret
( 203) 432-0666 (801) 750-2026

Wang R. H.
Wang Chaiho P.O. Box 586
1232 Meyer Court OLIN
Mclean VA 22101 350 Knotter Drive
(202) 724-6368 Cheshire CT 06410

(203) 271-4196

Wegman Edward J.
Weber James S. Center for Comutational Statistics
Department of Management George Mason University
Roosevelt University 242 Science Technology Building
P.O. Box 603 Fairfax VA 22030
Gurnee IL 60031-0603 ewegmar1muvax.gmu.edu

703 323 2723

I Weidman Scott Weiss Guenter
MRJ, Inc. University of Winnipeg
10455 White Granite Drive 515 Portage Avenue
Oakton VA 22124 Winnipeg Man R3B 2E9
(703) 385-0879 CANADA

(204) 786-9399

I Weiss Robert E.
Department of Applied Statistics Welsch Roy E.
University of Minnesota M.I.T.
Classrow Office Bldg. 352 50 Mmorial Drive, E53-383
St. Paul Mf 55108 Cambridge MA 02139
weissLmmstat.stat.umn.edu (617) 253-6601
(612) 625-2756

Wesley Robert Whitney David A.
Department of Health and Human Services TASC
9807 Owen Brown Road 55 Walkers Brook Drive
Columbia MD 21045 Reading MA 01867
(301) 496-7946 (617) 942-2000



Whitridge Patricia I
Busiles Survey Methods Division
statistics Canada Wilburn Arthur J.
RW Coats Bldg 11-C, Tunney's Pasture 4600 Jasmine Drive I
Ottawa Ontario KIA 0T6 Rockville HD 20853-1737
CANADA (301) 929-1040
(613) 951-8614

Winkler Gemnot
Wilson P. David Time Service Department

04 Shadow ve Court U.S. Naval Observatory U
Lutz IL 33549 34th & Massachusetts Avenue, MW

(813) 974-4860 Washington DC 20392-5100
(202) 653-1520 I

Winikler William Z. Wochnik Michael
Census Bureau 1212 Gibbon 16
Washington DC 20233 Laramie WY 82070
(301) 763-3905 (307) 745-9393

Vollan Peter Volting Duan

Department of Mathematics Arojet TechSystuw Company

Michigan Technological University P.O. Box 13222, Bldg. 2002, Dept. 9470
fibghton MI 49931 Sacramento CA 95813

USA (916) 355-2692
(906) 487-2694 1

Woodfield Terry J.
Woodburn Rose Louise SAS Institute Inc.
8426 Ravenswood Road SAS Circle, Box 8000 I
New Carrollton HD 20784 Cary NC 27512-8000
(301) 459-5138 (919) 467-8000

Woodruff Brian yscarver Roy A.
Bolling AFB Fconmtic Modeling & Ccmputer Application
AIOSR U.S. Treasury Department
Washington DC 20332 15th & Pennsylvania Ave., NW
(202) 767-5027 Washington DC 20220 i(202) 566-5085

Yang Ting I
Yang C. C. University of Cincinnati
NRL ML 025
Code 5380 Cincinnati OH 45221 I
Washington DC 20375 (513) 475-5619 I
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I
Young Dean M.
Departmnt of Information System Youngre Mark A.
Baylor University 3809 Terrace Drive
Waco IX 76798 Annandale VA 22003
(817) 755-2258 (202) 295-1625

I Yu a ChMg W.
Dept. 23W, Bldg. 630, E60
IBf Corporation - East Fishkill
Route 52
fpewell June. NY 12533-0999
(914) 892-2200
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Interface Conference Expenses Billed to AFOSR

Clerical Support
Salary to Registration Personnel 1122

Travel

Hal Stern 116

Total Travel 116

Per Diem
Munish Mehra 334
M. Bolorforoush 25
John Miller 31
Kim Anh Do 334
Claire Mathieu 69
Hal Stern 25

Total Per Diem 818

Registration Remission
Jerome Liang 130
Ahmad Mokatrin 105
Reza Modarres 105
Kim Anh Do 105
Y. B. Lim 105
Daniel Normolle 105
Andrew Bruce 105
Lynn A. Sleeper 95
Jeff Banfield 105
Tina Song 105
Celesta Ball 130
M. Bolorforoush 105
Hung Le 105
John Miller 105
Tom Kaufman 105
Douglas Nychka 105
Claire Mathieu 130
Bradley Efron 105
Kathryn Chaloner 130
R. W. Oldford 105
Katherine Hurley 95
Deborah Donnell 120
Naomi Altman 105
Hal Stern 95

Total Registration Remission 2605

Invited Speaker HonorariumThomas Banchoff 500
Wolfgang Haerdle 575

Total Invited Speaker Honorarium 1075

Total Participant Expenses 4614

I



Miscellaneous Expenses
Letterhead 282
Signs and Signholders 289
Proceedings Expenses 976
Certiticates 52
Audio-Visual Rental 1686
Duplicating 70

Total Miscellaneous Expenses 3355 1
Total Direct 9091

Indirect at 10% of Total Direct 909

Grand Total 10000
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